牛顿法与拟牛顿法

这两种方法在优化中使用到了目标函数的二阶导数信息,比一阶导数具有更快的收敛速度。

牛顿法:
目标为如下:
在这里插入图片描述
将其展开为泰勒二阶形式,有如下近似相等:
在这里插入图片描述
对两边同时求导,有:
在这里插入图片描述
令导数为0,牛顿方向即为如下:
在这里插入图片描述
在这里插入图片描述
Pk为向量
重复此过程(因为上面是近似相等),直到梯度信息小于阈值即可为收敛:
在这里插入图片描述
其中:
当 H 为正定矩阵时,牛顿法才有效(因为在 k 点附近函数为下凸的,详见统计学习方法附录B.14);
当 |H| = 0 时,无法计算逆矩阵,此时无意义;
当 H 负定时,在 k 点附近函数为上凸,找到的是极大值;

BFGS 拟牛顿法:
在上面的式子中,有:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
考虑构造矩阵B来逼近海森矩阵H,使得:
在这里插入图片描述
在这里插入图片描述
令 P 为,
在这里插入图片描述
令 Q 为,
在这里插入图片描述
则有,
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值