https://acm.njupt.edu.cn/problem/NOJ1201
Description:
一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2,…,9。给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2,…,9。
Input:
输入只有1 行,给出表示书的总页码的整数n。
Output:
输出共有10行,在第k行输出页码中用到数字k-1 的次数,k=1,2,…,10。
Sample Input:
11
Sample Output:
1
4
1
1
1
1
1
1
1
1
方法一:暴力
#include <stdio.h>
int main (void){
int outarr [10];
int a ,b=0;
for(int i = 0;i<10 ;i++){
outarr[i] = 0;
}
scanf("%d",&a);
for(int i = 1; i<=a;i++){
b=i;
while(b>0){
outarr[b%10]++;
b /= 10;
}
}
for(int i =0 ;i<10;i++){
printf("%d\n",outarr[i]);
}
return 0;
}
方法二:写递归函数,分别求最高位,一位位破解
#include <iostream>
#include <cmath>
#include <stdio.h>
using namespace std;
int main(){
int count[10];
int i,j,k,L;
int n,len,m;
while(scanf("%d",&n)!=EOF){
m=n;
L=ceil(log10(n+1));
for(i=0;i<10;i++) count[i] = 0;
for(j=0;j<L;j++){
len=ceil(log10(m+1));
//从高位到低位取个位数的值
k=m/pow(10.0,len-1);
//从K*len的数值 0-9出现的次数
for(i=0;i<10;i++) count[i] += k*(len-1)*pow(10.0,len-2);
//在高位小于数值K的数字出现的次数
for(i=0;i<k;i++) count[i] += pow(10.0,len-1);
//在高位数值K出现的次数
count[k]+=m-k*pow(10.0,len-1)+1;
//去掉以计算的高位
m=m-k*pow(10.0,len-1);
}
//去掉前导0
for(i=0;i<L;i++)count[0] -= pow(10.0,i);
for(i=0;i<10;i++) printf("%d\n",count[i]);
}
return 0;
}
全网找了半天题解,最后找到这个大佬的解答
https://www.cnblogs.com/mr-cheneytao/p/9724191.html