深度学习
文章平均质量分 76
YFR718
这个作者很懒,什么都没留下…
展开
-
【分类网络】LeNet
代码地址https://github.com/YFR718/Pytorch_Ai背景lecun大佬最早对手写数字进行识别,1980年代。网络结构1.第一层C1是一个卷积层输入图片: 32 * 32卷积核大小: 5 * 5卷积核种类: 6输出feature map大小:2828(32-5+1)神经元数量:28 * 28 * 6可训练参数数量:(5 * 5+1) * 6,(每个卷积核25个权重值w,一个截距值bias;总共6个卷积核)连接数量:(5 * 5+1)628282.第原创 2021-04-01 23:20:33 · 198 阅读 · 0 评论 -
【分类网络】MobileNet_v2
所有源码:https://github.com/YFR718/Pytorch_Ai背景MobileNetV2是MobileNet的升级版,它具有一个非常重要的特点就是使用了Inverted resblock,整个mobilenetv2都由Inverted resblock组成。创新点Inverted resblock首先利用1x1卷积进行升维,然后利用3x3深度可分离卷积进行特征提取,然后再利用1x1卷积降维。ReLU6ReLU激活函数对低维特征信息照成大量损失网络结构设计该原创 2021-04-01 21:13:23 · 600 阅读 · 0 评论 -
【分类网络】MobileNet_v1
背景2017年google提出,模型参数为VGG的1/32,准确率下降0.9。MobileNetV1就是把VGG中的标准卷积层换成深度可分离卷积(DW)。创新点(DW)深度卷积传统卷积:参数 in_channelout_channelK*KDepthwiseConv:参数 in_channelKK特点卷积核深度为1in_channel卷积核个数out_channel(PW)逐点卷积就是K = 1的传统卷积DW+PW = Conv计算量和参数个数减为Conv的1/N+原创 2021-04-01 15:50:27 · 240 阅读 · 0 评论 -
【目标检测】YOLOv5
http://yli17.cn/caRlQ网络结构性能Yolov5s网络最小,速度最少,AP精度也最低。但如果检测的以大目标为主,追求速度,倒也是个不错的选择。其他的三种网络,在此基础上,不断加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。目前使用下来,yolov5s的模型十几M大小,速度很快,线上生产效果可观,嵌入式设备可以使用。核心思想Mosaic数据增强Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。随机缩放、随机裁剪、随机排布的方式进行拼.原创 2021-03-25 17:13:31 · 5041 阅读 · 0 评论 -
【目标检测】YOLOv4
参考:http://yli17.cn/LcNQ0特点是一个高效而强大的目标检测网咯。它使我们每个人都可以使用 GTX 1080Ti 或 2080Ti 的GPU来训练一个超快速和精确的目标检测器。这对于买不起高性能显卡的我们来说,简直是个福音!在论文中,验证了大量先进的技巧对目标检测性能的影响,真的是非常良心!对当前先进的目标检测方法进行了改进,使之更有效,并且更适合在单GPU上训练;这些改进包括CBN、PAN、SAM等。网络结构最简单清晰的表示: YOLOv4 = CSPDarknet53(原创 2021-03-24 21:28:31 · 938 阅读 · 0 评论 -
【目标检测】YOLOv3
网络结构特征提取部分采用darknet-53网络结构代替原来的darknet-19,利用特征金字塔网络结构实现了多尺度检测,分类方法使用逻辑回归代替了softmax,在兼顾实时性的同时保证了目标检测的准确性。Darknet-53主要由1×1和3×3的卷积层组成,每个卷积层之后包含一个批量归一化层和一个Leaky ReLU,加入这两个部分的目的是为了防止过拟合。卷积层、批量归一化层以及Leaky ReLU共同组成Darknet-53中的基本卷积单元DBL。因为在Darknet-53中共包含53个这样的D原创 2021-03-24 21:02:36 · 788 阅读 · 0 评论 -
【目标检测】YOLOv2
更快更强网络结构改进方法(1)加入BN,提升2个点(2)更高分辨率,v1 224224,v2 448448.提升4%(3)引入 Anchor Box 机制在YOLOv1中,作者设计了端对端的网路,直接对边界框的位置(x, y, w, h)进行预测。这样做虽然简单,但是由于没有类似R-CNN系列的推荐区域,所以网络在前期训练时非常困难,很难收敛。于是,自YOLOv2开始,引入了 Anchors box 机制,希望通过提前筛选得到的具有代表性先验框Anchors,使得网络在训练时更容易收敛。预原创 2021-03-24 16:07:59 · 232 阅读 · 0 评论 -
【目标检测】YOLOv1
参考:http://yli17.cn/9kYRY背景在YOLOv1提出之前,R-CNN系列算法在目标检测领域独占鳌头。R-CNN系列检测精度高,但是由于其网络结构是双阶段(two-stage)的特点,使得它的检测速度不能满足实时性。2016年,提出了一种单阶段(one-stage)的目标检测网络。由于其速度之快和其使用的特殊方法,作者将其取名为:You Only Look Once,并将该成果发表在了CVPR 2016上。YOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络原创 2021-03-24 15:29:20 · 473 阅读 · 0 评论