【算法】二分

在这里插入图片描述

def erfen(l,r,precesion):
    if r-l<precesion :
        return l
    mid = (l+r)/2
    if f(mid)==0:
        return mid
    if f(mid)*f(r)>0:
        return erfen(l,mid,precesion)
    else:
        return erfen(mid,r,precesion)

def erfen(l,r,precesion):
    while r-l<precesion:
        mid = (l+r)/2
        if f(mid)==0:
            return mid
        if f(mid)*f(r)>0:
            r = mid
        else:
            l = mid
    return l

在这里插入图片描述

二分查找

在这里插入图片描述

def Binarysearch(a,l,r,v):
    if l>r:
        return -1
    mid = (l+r)/2
    if a[mid]==v:
        return mid
    if a[mid]>v:
        return Binarysearch(a,l,mid-1,v)
    else:
        return Binarysearch(a,mid+1,r,v)

def Binarysearch(a,l,r,v):
    while l<=r:
        mid = (l+r)/2
        if a[mid]==v:
            return mid
        if a[mid]>v:
            r = mid-1
        else:
            l =mid+1
    return -1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二分查找和标准二分法的差别

把数组看成函数的话,二分查找就是定义在整数区间上的二分法。
相比之下,二分查找额外地要求单调;同时能够找到准确答案。

二分答案

二分答案,即通过题目中包含的单调性对答案进行二分。
大多数二分答案可以看做是标准二分法套了一个奇奇怪怪的函数。
解答需要使用二分答案的题目,最重要的是观察出单调性
通常来说,二分答案题目为下列两种中的一种:

  1. 给定一个评价函数,求评价函数的最小值 / 最大值 。
  2. 给定一个条件,要求在满足条件的同时,使得代价最小。
    计算函数或者判断符合条件需要消耗极长的时间;
    或者评价函数的值域太大了,不能一一计算
    在这里插入图片描述
while l<r:
    mid = (l+r)/2
    if check(mid):
        r = mid
    else:
        l = mid+1
ans = l

二分答案有着非常套路化的做法。
通常只需两步:

  1. 观察单调性,找到需要计算的条件;
  2. 二分,并验证条件。

二分答案的难点通常落在发现单调性和验证条件上。
验证条件通常都会涉及到离线的思想。
通常来说,题面中有,或者暗含类似于:

  • 最大值最小 / 最小值最大
  • 最靠近某个值
  • 最小的能满足条件的代价

那么通常都可以往二分答案想。

聪明的质检员

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

跳石头

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

hash

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值