def erfen(l,r,precesion):
if r-l<precesion :
return l
mid = (l+r)/2
if f(mid)==0:
return mid
if f(mid)*f(r)>0:
return erfen(l,mid,precesion)
else:
return erfen(mid,r,precesion)
def erfen(l,r,precesion):
while r-l<precesion:
mid = (l+r)/2
if f(mid)==0:
return mid
if f(mid)*f(r)>0:
r = mid
else:
l = mid
return l
二分查找
def Binarysearch(a,l,r,v):
if l>r:
return -1
mid = (l+r)/2
if a[mid]==v:
return mid
if a[mid]>v:
return Binarysearch(a,l,mid-1,v)
else:
return Binarysearch(a,mid+1,r,v)
def Binarysearch(a,l,r,v):
while l<=r:
mid = (l+r)/2
if a[mid]==v:
return mid
if a[mid]>v:
r = mid-1
else:
l =mid+1
return -1
二分查找和标准二分法的差别
把数组看成函数的话,二分查找就是定义在整数区间上的二分法。
相比之下,二分查找额外地要求单调;同时能够找到准确答案。
二分答案
二分答案,即通过题目中包含的单调性对答案进行二分。
大多数二分答案可以看做是标准二分法套了一个奇奇怪怪的函数。
解答需要使用二分答案的题目,最重要的是观察出单调性。
通常来说,二分答案题目为下列两种中的一种:
- 给定一个评价函数,求评价函数的最小值 / 最大值 。
- 给定一个条件,要求在满足条件的同时,使得代价最小。
计算函数或者判断符合条件需要消耗极长的时间;
或者评价函数的值域太大了,不能一一计算
while l<r:
mid = (l+r)/2
if check(mid):
r = mid
else:
l = mid+1
ans = l
二分答案有着非常套路化的做法。
通常只需两步:
- 观察单调性,找到需要计算的条件;
- 二分,并验证条件。
二分答案的难点通常落在发现单调性和验证条件上。
验证条件通常都会涉及到离线的思想。
通常来说,题面中有,或者暗含类似于:
- 最大值最小 / 最小值最大
- 最靠近某个值
- 最小的能满足条件的代价
那么通常都可以往二分答案想。
聪明的质检员
跳石头
hash