拓扑排序
有向无环图
如果一个有向图的任意顶点都无法通过一些有向边回到自身,那么称这个有向图为有向无环图。
拓扑排序
拓扑排序是将有向无环图G的所有顶点排成一个线性序列,使得对图G中的任意两个顶点u、v,如果存在边u->v,那么在序列中u一定在v前面,这个序列又被称为拓扑序列。
如下图:结点0和1没有前驱节点,可以任意访问,但是结点2必须在结点0和1访问完之后才能访问,同理结点3和4必须在结点2访问完以后才能访问,但是结点3和4 之间没有依赖关系,结点5必须在结点3和结点6访问之后才能访问,等等.....
因此,对于下图的一个拓扑序列可以是:0,1,2,3,4,6,5,7 也可以是:0,1,2,4,6,3,5,7
拓扑排序步骤如下:
(1)定义一个队列Q,并把所有入度为0的结点加入队列
(2)取队首结点,访问输出,然后删除所有从它出发的边,并令这些边到达的顶点的入度减1,如果某个顶点的入度减为0,则将其加入队列。
(3)重复进行(2)操作,直到队列为空。如果队列为空时入过队的结点数恰好为N,说明拓扑排序成功,图G为有向无环图;否则,拓扑排序失败,图G有环。
代码实现如下:
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
bool TopSort(vector<vector<int>> &G, int n, vector<int> &inDegree) {
/*
* param
* G: 邻接表
* n: 顶点数
* InDegree: 记录顶点的入度
*/
int num = 0; //记录加入拓扑排序的顶点数
queue<int> q;
for (int i = 0; i < n; i++)
if (inDegree[i] == 0)
q.push(i); //将所有入度为0的顶点入队
while (!q.empty()) {
int u = q.front(); //取队首顶点u
cout << u << " ";
q.pop();
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i]; //u的后继节点
inDegree[v]--; //v的入度减1
if (inDegree[v] == 0) //顶点v的入度减为0则入队
q.push(v);
}
G[u].clear(); //清空顶点u的所有出边
num++;
}
if (num == n) //加入拓扑序列的顶点数为n,说明拓扑排序成功,否则,失败
return true;
else
return false;
}
int main() {
int n, m;
cout << "请输入顶点数和边数:";
cin >> n >> m;
vector<vector<int>> G(n);
for (int i = 0; i < m; i++) {
int x, y;
cout << "请输入第" << i+1 << "条边的顶点:";
cin >> x >> y;
G[x].push_back(y);
}
cout << "拓扑排序为:";
vector<int> inDegree(n);
for (auto x : G) {
for (auto y : x)
inDegree[y]++;
}
bool res = TopSort(G, n, inDegree);
return 0;
}
运行结果为: