C++ 拓扑排序算法

拓扑排序

有向无环图
     如果一个有向图的任意顶点都无法通过一些有向边回到自身,那么称这个有向图为有向无环图。

拓扑排序
     拓扑排序是将有向无环图G的所有顶点排成一个线性序列,使得对图G中的任意两个顶点u、v,如果存在边u->v,那么在序列中u一定在v前面,这个序列又被称为拓扑序列。

如下图:结点0和1没有前驱节点,可以任意访问,但是结点2必须在结点0和1访问完之后才能访问,同理结点3和4必须在结点2访问完以后才能访问,但是结点3和4 之间没有依赖关系,结点5必须在结点3和结点6访问之后才能访问,等等.....
因此,对于下图的一个拓扑序列可以是:0,1,2,3,4,6,5,7 也可以是:0,1,2,4,6,3,5,7
拓扑排序步骤如下:
(1)定义一个队列Q,并把所有入度为0的结点加入队列
(2)取队首结点,访问输出,然后删除所有从它出发的边,并令这些边到达的顶点的入度减1,如果某个顶点的入度减为0,则将其加入队列。
(3)重复进行(2)操作,直到队列为空。如果队列为空时入过队的结点数恰好为N,说明拓扑排序成功,图G为有向无环图;否则,拓扑排序失败,图G有环。

代码实现如下:
#include <iostream>
#include <vector>
#include <queue>
using namespace std;

bool TopSort(vector<vector<int>> &G, int n, vector<int> &inDegree) {
	/*
	*	param
	*	G:	邻接表
	*	n:	顶点数
	*	InDegree:	记录顶点的入度	
	*/
	int num = 0;				//记录加入拓扑排序的顶点数
	queue<int> q;
	for (int i = 0; i < n; i++)
		if (inDegree[i] == 0)
			q.push(i);		//将所有入度为0的顶点入队
	while (!q.empty()) {
		int u = q.front();		//取队首顶点u
		cout << u << " ";		
		q.pop();
		for (int i = 0; i < G[u].size(); i++) {
			int v = G[u][i];		//u的后继节点
			inDegree[v]--;			//v的入度减1
			if (inDegree[v] == 0)		//顶点v的入度减为0则入队
				q.push(v);
		}
		G[u].clear();			//清空顶点u的所有出边
		num++;
	}
	if (num == n)				//加入拓扑序列的顶点数为n,说明拓扑排序成功,否则,失败
		return true;
	else
		return false;
}

int main() {
	int n, m;
	cout << "请输入顶点数和边数:";
	cin >> n >> m;
	vector<vector<int>> G(n);
	for (int i = 0; i < m; i++) {
		int x, y;
		cout << "请输入第" << i+1 << "条边的顶点:";
		cin >> x >> y;
		G[x].push_back(y);
	}
	cout << "拓扑排序为:";
	vector<int> inDegree(n);
	for (auto x : G) {
		for (auto y : x)
			inDegree[y]++;
	}
	bool res = TopSort(G, n, inDegree);

	return 0;
	
}
运行结果为:


评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值