马尔可夫决策过程(MDP)
马尔可夫决策过程(Markov Decision Process, MDP)是序贯决策(sequential decision)的数学模型,用于在系统状态具有马尔可夫性质的环境中模拟智能体可实现的随机性策略与回报。MDP基于一组交互对象,即智能体和环境进行构建,所具有的要素包括状态、动作、策略和奖励。
在MDP中,未来的状态只依赖于当前的状态和所采取的动作,而与过去的状态和动作无关,这种性质被称为“马尔可夫性”。MDP由状态空间、动作空间、转移概率函数和奖励函数组成。
MDP的动态过程如下:智能体(Agent)从初始状态S0开始,然后从所有可能的动作中挑选一个动作a0执行,根据概率Pa,智能体会随机转移到下一个状态S1,然后再执行动作a1,就转移到了S2,以此类推。
蒙特卡洛方法
强化学习中蒙特卡洛(Monte Carlo,MC)方法是一种用于估计值函数(如状态值函数V(s)或动作值函数Q(s, a))的算法。它通过模拟智能体与环境的大量互动,并计算这些互动中获得的平均奖励来估计值函数。
蒙特卡洛方法的基本思想是通过模拟和抽样来估计值函数。具体来说,它首先让智能体根据某个策略(可以是随机策略或基于当前值函数的策略)与环境进行交互,生成一系列样本序列(也称为“幕”或“轨迹”)。然后,它利用这些样本序列来更新值函数的估计。
蒙特卡洛方法的一个主要优点是它可以利用实际经验来进行学习,而不需要知道环境的动态模型。这使得它可以在很多实际问题中得到应用,特别是那些环境模型难以建立或不存在的问题。
联系
在强化学习中,马尔可夫决策过程为智能体提供了一个框架,用于理解环境的状态转移和奖励。而蒙特卡洛方法则用于估计这些状态转移和奖励带来的长期影响。具体来说,蒙特卡洛方法可以用于估计MDP中的状态值函数或动作值函数,从而帮助智能体找到最优的策略。
强化学习使用马尔可夫决策过程来描述环境,并使用蒙特卡洛方法来估计值函数和寻找最优策略。