Z-score规范化(也称为标准化)是数据预处理中常用的一种方法,通过计算每个数据点与均值之间的差异,并将其除以标准差,来将原始数据转换为具有零均值和单位方差的新数据集。
Z-score规范化的公式如下:
其中:
- z 是规范化后的值(也称为z分数或标准分数)。
- x 是原始数据点。
- μ 是原始数据集的均值。
- σ 是原始数据集的标准差。
Z-score规范化的原理基于统计学中的标准分数概念。它的主要目的是将原始数据转换成一个标准的尺度,以便进行比较和分析。
-
中心化:Z-score规范化通过从每个原始数据点中减去数据集的均值(μ),将数据的中心移动到零点。这一步是为了消除数据的原始均值对分析结果的影响,使得新的数据集具有零均值。
-
缩放尺度:除了中心化之外,Z-score规范化还通过将中心化后的每个数据点除以数据集的标准差(σ),将数据缩放到相同的尺度。这一步是为了消除数据的尺度(或单位)差异,使得不同特征或不同数据集之间的比较更加公平和有意义。
通过这两步操作,原始数据被转换为一个具有零均值和单位方差的新数据集。这个过程也叫做标准化,得到的数据被称为标准分数或Z分数。
Z-score规范化的主要优点包括:
- 尺度不变性:规范化后的数据具有相同的尺度,这使得不同特征之间的比较更加公平。
- 中心化:数据被中心化到均值为0,这有助于某些机器学习算法(如支持向量机和逻辑回归)的性能和稳定性。
- 保持数据分布:Z-score规范化不会改变数据的分布形状。如果原始数据近似正态分布,那么规范化后的数据将具有均值为0和标准差为1,但仍然保持其原有的分布形状。
- 距离解释性:在规范化后的空间中,欧几里得距离可以解释为标准差的倍数,这有助于理解数据点之间的相对距离。
在实际应用中,Z-score规范化广泛应用于机器学习和数据分析领域,特别是当算法对数据的尺度和分布敏感时。例如,支持向量机(SVM)和K-均值聚类等算法在处理具有相同尺度的数据时表现更好。
此外,Z-score规范化也有助于提高梯度下降等优化算法的收敛速度。