Transformer Attention机制中的Query、Key和Value

本文详细解释了Transformer架构中Query、Key和Value在注意力机制中的作用,以及它们在自注意力和跨注意力中的应用,强调了这些概念在捕捉上下文依赖和建立跨语言关联中的关键角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Transformer架构中的注意力机制中,Query、Key和Value是三个核心概念,其中Query 用于衡量与每个 Key 的相关性,Key 用于构建注意力得分的计算基础,而 Value 用于根据注意力得分进行加权求和,生成最终的注意力输出:

  • Query(查询):

Query向量代表的是“查询”的一部分,它通常与当前位置(例如解码阶段的当前位置)或者整个序列(编码阶段)有关的信息相对应。Query用来衡量和其它所有位置上的信息的相关性。当模型需要生成当前时刻的输出时,Query向量就起到了寻找相关信息的作用。

  • Key(键):

Key向量代表的是输入序列中每个位置的信息的“索引”或“查找表”,可以理解为每个位置的标识特征。在计算注意力权重时,每个位置的Key向量会与Query向量进行比较,通过计算点积或其它相似度函数来评估Query与序列中各位置之间的相关性。Key向量决定了哪些输入位置的信息对当前Query来说最重要。

  • Value(值):

Value向量是与每个位置相关联的“内容”或“上下文信息”的载体,包含的是实际要被关注并组合成输出的信息,即每个位置上我们认为对后续处理有价值的信息。当某个位置的Key与Query匹配度高时,对应的Value向量的权重就会增大,因此,在计算最终输出时会更多地考虑这部分信息。*注意:在计算完Attention权重之后,Value向量并不直接参与相似度计算,而是被相应的Attention权重所加权,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值