在强化学习中,将神经网络模型分成动作头(Actor)和价值头(Critic)的做法是基于Actor-Critic架构的设计。这种架构结合了策略梯度和优势函数Q-learning两种方法的优点,允许模型同时学习策略和价值函数,实现更高效、稳定和灵活的学习。
- 策略和价值分离:
- 动作头(Actor):负责学习一个策略,即根据当前状态选择动作的概率分布。它的输出通常是一个向量,其长度等于动作空间的大小,表示在不同动作上的概率或偏好。
- 价值头(Critic):负责估计状态的价值,即预期回报。它的输出通常是一个标量值,表示当前状态下未来可能获得的累积奖励的估计。
- 优势函数估计:
- 通过结合动作头和价值头的输出,可以计算优势函数(Advantage Function),它表示了采取某个特定动作相对于平均动作的优势。优势函数用于策略梯度更新中,可以更有效地调整策略,因为它考虑了动作相对于状态价值的优劣。
- 减少方差:
- 在策略梯度方法中,使用优势函数可以减少梯度估计的方差,从而加速学习过程并提高稳定性。价值头提供了状态价值的估计,这有助于校正动作头产生的策略梯度,使其更加准确和可靠。
- 共享特征表示:
- 在神经网络中,动作头和价值头通常共享一些底层的特征表示层(如全连接层)。这样做的好处是可以减少模型的参数数量,并允许两个头从相同的输入状态中学习共同的特征表示,从而提高样本效率和学习速度。
- 灵活性和扩展性:
- 通过将动作和价值预测分开处理,Actor-Critic架构提供了更大的灵活性和扩展性。例如,可以根据需要调整动作头或价值头的复杂性,或者将额外的辅助任务(如辅助奖励预测)集成到模型中。