还是先说答案:
有了固然好,没有也凑合 (( ・∀・ ))・∀・) )
在强化学习中,将经验(通常包括当前状态、动作、下一步状态、奖励以及是否结束的标志)存入经验池(也称为回放缓冲区或经验回放存储器)而不是每轮模拟评估后直接更新的做法,有几个重要的原因:
-
数据去相关:在连续的状态序列中,状态之间往往存在高度的相关性。如果直接使用这些连续的状态来更新网络,可能会导致网络过度拟合到这些相关的状态转移上,从而降低泛化能力。通过将经验存入经验池并在后续的训练中随机抽取,可以打乱状态之间的相关性,使得网络能够学习到更加泛化的策略。
-
稳定学习:使用经验回放可以增加学习的稳定性。由于每次更新都是从经验池中随机抽取一批经验进行的,这有助于平滑数据的分布,减少训练过程中的方差。这对于使用深度神经网络的强化学习算法尤为重要,因为深度神经网络对输入数据的分布非常敏感。
-
提高数据效率:经验回放允许算法多次利用过去的经验,从而提高数据效率。这对于样本获取成本高昂或环境模拟速度较慢的情况尤为重要。通过多次回放和利用这些经验,算法可以从有限的数据中学习到更多的信息。
-
异步学习:在某些情况下,经验的生成和网络的更新可以是异步的。这意味着可以在一个或多个环境中并行地收集经验,并将这些经验存储到经验池中。然后,可以在另一个进程中从经验池中抽取经验来更新网络。这种异步学习的方式可以进一步提高计算资源的利用率和算法的训练速度。
使用经验池(经验回放)在强化学习中带来了许多好处,但并不意味着没有经验池就无法进行强化学习。
不使用经验池而直接进行更新,通常被称为在线学习(on-policy learning),因为学习过程中使用的经验是由当前策略直接生成的。这种方法的优点是简单直接,不需要额外的存储空间来维护经验池,也不需要在训练时从经验池中随机抽取样本。
然而,不使用经验池可能会遇到以下问题:
-
数据相关性:由于没有打乱经验的顺序,连续的状态和动作之间可能存在高度的相关性。这可能导致学习过程变得不稳定,因为网络可能会过度拟合到最近的经验上,而无法泛化到更广泛的状态空间。
-
样本效率:没有经验回放意味着每个经验样本只被使用一次,然后就被丢弃了。这可能会导致学习过程中样本的利用率低下,尤其是对于那些获取经验成本高昂或环境模拟速度较慢的任务来说,这是一个显著的问题。
-
探索与利用的权衡:在没有经验回放的情况下,探索新策略和利用已有知识之间的权衡变得更加困难。由于每次更新都基于当前策略生成的经验,算法可能会陷入局部最优解,而无法充分探索其他可能更好的策略。
尽管如此,但在某些特定的应用场景中,不使用经验池仍然是可行的。例如,当环境非常简单、状态空间有限且容易探索时,或者当对实时性要求非常高、无法承受额外的存储和计算开销时,直接进行在线学习可能是一个合适的选择。
然而,在大多数情况下,使用经验回放被证明是一种有效的方法,可以提高强化学习算法的稳定性、数据效率和性能。因此,在许多现代的强化学习算法中,经验回放已成为一种标准的做法。