机器学习笔记DayOne

DataWhale 学习笔记

date1- 安装

安装pytorch,前提,有anconda并且已经有jupyter和环境。

https://pytorch.org/get-started/locally/, 访问官网
image-20230318225254518
然后自己选择,复制下面的命令到conda新建的环境终端里开始下载。

import torch

没有报错,说明torch安装成功。

date2 - 预备知识

数据操作

为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。

首先,我们介绍的n维数组,也称为张量(tensor)。 使用过Python中NumPy计算包的读者会对本部分很熟悉。 无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray, 在PyTorch和TensorFlow中为Tensor)都与Numpy的ndarray类似。 但深度学习框架又比Numpy的ndarray多一些重要功能: 首先,GPU很好地支持加速计算,而NumPy仅支持CPU计算; 其次,张量类支持自动微分。 这些功能使得张量类更适合深度学习。 如果没有特殊说明,本书中所说的张量均指的是张量类的实例。

# 创建一个张量
x = torch.arange(12)
x
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
# 访问张量的形状和元素总数
x.shape
torch.Size([12])
# 元素总数
x.numel()
12

要改变一个张量的形状而不改变元素量和值,调用reshape函数

x = x.reshape()
x
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
x.shape
torch.Size([3, 4])

使用全0、全1、其他常量或者从特定分布中随机采样的数字

# 全0
torch.zeros((2,3,4))
tensor([[[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
# 全1
torch.ones((2,3,4))
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]])
# 随机
torch.randn(3,4)
tensor([[ 1.7191,  0.3106, -1.0100, -1.1257],
        [ 2.4160,  1.4670,  1.2344, -0.6265],
        [-0.5450,  1.8891, -0.0472, -0.7566]])

通过提供包含数值的 Python 列表(或嵌套列表)来为所需张量中的每个元素赋予确定值

torch.tensor([[2,0,0,2],[0,1,2,2],[1,2,0,3]])
tensor([[2, 0, 0, 2],
        [0, 1, 2, 2],
        [1, 2, 0, 3]])

运算符


常见的标准算术运算符(+-*/** )都可以被升级为按元素运算

x = torch.tensor([1.0,2,3,4])
y = torch.tensor([2,2,2,2])
x+y,x-y,x*y,x**y,x/y
(tensor([3., 4., 5., 6.]),
 tensor([-1.,  0.,  1.,  2.]),
 tensor([2., 4., 6., 8.]),
 tensor([ 1.,  4.,  9., 16.]),
 tensor([0.5000, 1.0000, 1.5000, 2.0000]))
# 还有指数运算,返回以e为底,x中元素为幂的张量
torch.exp(x)
tensor([ 2.7183,  7.3891, 20.0855, 54.5981])

还可以把多个张量连起来,横着连竖着连。。。

x = torch.arange(12,dtype=torch.float32).reshape((3,4))
y = torch.tensor([[2.0,0,0,2],[0,1,2,2],[3,4,5,1]])
torch.cat((x,y),dim=0),torch.cat((x,y),dim=1)
(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [ 2.,  0.,  0.,  2.],
         [ 0.,  1.,  2.,  2.],
         [ 3.,  4.,  5.,  1.]]),
 tensor([[ 0.,  1.,  2.,  3.,  2.,  0.,  0.,  2.],
         [ 4.,  5.,  6.,  7.,  0.,  1.,  2.,  2.],
         [ 8.,  9., 10., 11.,  3.,  4.,  5.,  1.]]))

通过 逻辑运算符 构建二元张量

x == y,x > y
(tensor([[False, False, False, False],
         [False, False, False, False],
         [False, False, False, False]]),
 tensor([[False,  True,  True,  True],
         [ True,  True,  True,  True],
         [ True,  True,  True,  True]]))
x.sum()
tensor(66.)

广播机制

在上面的部分中,我们看到了如何在相同形状的两个张量上执行按元素操作。 在某些情况下,即使形状不同,我们仍然可以通过调用 广播机制(broadcasting mechanism)来执行按元素操作。 这种机制的工作方式如下:

  1. 通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状;
  2. 对生成的数组执行按元素操作。

在大多数情况下,我们将沿着数组中长度为1的轴进行广播,如下例子:

a = torch.arange(3).reshape((3,1))
b = torch.arange(2).reshape((1,2))
a,b
(tensor([[0],
         [1],
         [2]]),
 tensor([[0, 1]]))
a+b
tensor([[0, 1],
        [1, 2],
        [2, 3]])

索引和切片

元素访问

x,x[-2],x[1:3],x[1,3]
(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]]),
 tensor([4., 5., 6., 7.]),
 tensor([[ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]]),
 tensor(7.))

还可以写入修改元素

x[1,3] = 666
x[1,3]
tensor(666.)
# 批量赋值
x[0:2,1:3] = 0
x
tensor([[ 0.,  0.,  0.,  3.],
        [ 4.,  0.,  0.,  7.],
        [ 8.,  9., 10., 11.]])

节省内存

运行一些操作可能会导致为新结果分配内存。 例如,如果我们用Y = X + Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。

在下面的例子中,我们用Python的id()函数演示了这一点, 它给我们提供了内存中引用对象的确切地址。 运行Y = Y + X后,我们会发现id(Y)指向另一个位置。 这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置

before = id(y)
y = y + x
id(y) == before
False

这可能是不可取的,原因有两个:

  1. 首先,我们不想总是不必要地分配内存。在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。通常情况下,我们希望原地执行这些更新;
  2. 如果我们不原地更新,其他引用仍然会指向旧的内存位置,这样我们的某些代码可能会无意中引用旧的参数

执行原地操作,torch.zeros_like(),复制张量大小和形状,但所有元素为0

z = torch.zeros_like(y)
print(id(z))
z[:] = x + y
print(id(z))
1994428989584
1994428989584

如果在后续计算中没有重复使用 X,我们也可以使用 X[:] = X + YX += Y 来减少操作的内存开销

转化为Python其它对象

将深度学习框架定义的张量转换为NumPy张量(ndarray)很容易,反之也同样容易。 torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量

A = x.numpy()
B = torch.tensor(A)
A,type(A),B,type(B)
(array([[ 0.,  0.,  0.,  3.],
        [ 4.,  0.,  0.,  7.],
        [ 8.,  9., 10., 11.]], dtype=float32),
 numpy.ndarray,
 tensor([[ 0.,  0.,  0.,  3.],
         [ 4.,  0.,  0.,  7.],
         [ 8.,  9., 10., 11.]]),
 torch.Tensor)

还可以将大小为1的张量转化为python标量

c = torch.tensor([3.5])
c,c.item(),int(c)
(tensor([3.5000]), 3.5, 3)

小节

深度学习存储和操作数据的主要接口是张量(n维数组)。它提供了各种功能,包括基本数学运算、广播、索引、切片、内存节省和转换其他Python对象。

练习

  1. 运行本节中的代码。将本节中的条件语句X == Y更改为X < Y或X > Y,然后看看你可以得到什么样的张量。
  2. 用其他形状(例如三维张量)替换广播机制中按元素操作的两个张量。结果是否与预期相同?
x = torch.arange(6,dtype = torch.float32).reshape(2,3)
y = torch.tensor([[2,1,3],[5,2,6]])
x,y
(tensor([[0., 1., 2.],
         [3., 4., 5.]]),
 tensor([[2, 1, 3],
         [5, 2, 6]]))
x == y,x > y
(tensor([[False,  True, False],
         [False, False, False]]),
 tensor([[False, False, False],
         [False,  True, False]]))
X = torch.arange(12,dtype = torch.float32).reshape(2,3,2)
Y = torch.arange(6).reshape(2,3,1)
X,Y
(tensor([[[ 0.,  1.],
          [ 2.,  3.],
          [ 4.,  5.]],
 
         [[ 6.,  7.],
          [ 8.,  9.],
          [10., 11.]]]),
 tensor([[[0],
          [1],
          [2]],
 
         [[3],
          [4],
          [5]]]))
X + Y
tensor([[[ 0.,  1.],
         [ 3.,  4.],
         [ 6.,  7.]],

        [[ 9., 10.],
         [12., 13.],
         [15., 16.]]])

通过做题发现一个问题,使用广播机制是有前提的,比如一个(1,3)和(2,2)就报错了

至于为何报错我们可以回到1.2.3中,(1,2)和(3,1),可以发现同一维度广播时必须是整数倍关系。当然其实按理来书也是可以的,取两数的最小公倍数,(1,3),(2,2)都变成(2,6),但人家就是这么设计肯定是有原因的,所以我们知道就行。

数据预处理

为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始, 而不是从那些准备好的张量格式数据开始。 在Python中常用的数据分析工具中,我们通常使用pandas软件包。 像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。 本节我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。 后面的章节将介绍更多的数据预处理技术

读取数据集

创建一个人工数据集,并存储在csv文件

import os
os.makedirs(os.path.join('.','data'),exist_ok=True)
data_file = os.path.join('.','data','house_tiny.csv')
with open(data_file,'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')
import pandas as pd
data = pd.read_csv(data_file)
data
NumRoomsAlleyPrice
0NaNPave127500
12.0NaN106000
24.0NaN178100
3NaNNaN140000

处理缺失值

注意,“NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑插值法。

通过位置索引iloc,我们将data分成inputs和outputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。

补充一点知识,pd.fillna()是填充空缺值,只接受标量或者ArrayLike(类数组,可以看作一个有索引的列表),pd.mean()是求平均值,pd.mean()返回一个series。

inputs,outputs = data.iloc[:,0:2],data.iloc[:,2]
inputs = inputs.fillna(inputs.mean(numeric_only=True))
inputs.fillna()
inputs
NumRoomsAlley
03.0Pave
12.0NaN
24.0NaN
33.0NaN

补充一下pd.get_dummies(),官方文档不易理解,只说这里用到的dummy_na。

get_dummies()是用于特征处理的,也叫one-hot-encodin处理,可能还是不好理解,再简单的说一个二维表里有一列是gender,性别有malefamale,那么这一列是有两个特征,然后把gender这一列换成gender_malegender_famale分别体现gender的两个特征,那么符合male的为1,否则为0,famale同理。get_dummies()就是这么个作用。

然后dummy_na这个参数默认为False,为True就是说我把nan也看作一个特征,特别关注一下。

inputs = pd.get_dummies(inputs,dummy_na=True)
inputs
NumRoomsAlley_PaveAlley_nan
03.010
12.001
24.001
33.001

现在inputsoutputs中所有条目都是数值类型,他们可以转化为张量类型了

x,y = torch.tensor(inputs.values),torch.tensor(outputs.values)
x,y
(tensor([[3., 1., 0.],
         [2., 0., 1.],
         [4., 0., 1.],
         [3., 0., 1.]], dtype=torch.float64),
 tensor([127500, 106000, 178100, 140000]))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值