学习笔记 Day 40 (机器学习算法 -- 基础)

概念:

 

领域:

 内容:

什么是机器学习:

sklearn:

 one—hot编码: 

字典特征抽取:

文本特征抽取:

 

from sklearn.feature_extraction.text import  CountVectorizer
import jieba

cv =  CountVectorizer()
text = '人生苦短。我用Python,你用不用,我数学看不懂'

te = ' '.join(list(jieba.cut(text)))

data = cv.fit_transform([te])

print(cv.get_feature_names())
print(data)

 

 tf-idf:

TF-IDF的主要思想是:

如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
 

from sklearn.feature_extraction.text import  CountVectorizer,TfidfVectorizer
import jieba

tf =  TfidfVectorizer() # stop_words= 停用词
text = '人生苦短。我用Python,你用不用,我数学看不懂'

te = ' '.join(list(jieba.cut(text)))

data = tf.fit_transform([te])

print(tf.get_feature_names())
print(data)

结果:

反映的是重要性程度。

特征预处理:

        通过特定的统计方法(数学方法)将数据转换成算法要求的数据

归一化:

标准化:

 

在已有样本比较多的情况下比较稳定,适合嘈杂大数据场景 

缺失值处理:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值