地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ji-qi-ren-de-yun-dong-fan-wei-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
一、考点:深度优先或者广度优先遍历
二、主要思路:
1. 题目获取信息。
- m行n列方格,表示是一个矩阵;
- 每次可以向左右上下移动一格,表示每次只有一个方向的索引会发生变化,因此计算两个下标位数之和 的公式: 新点下标位数和=上个点一个方向位数和 + (上一个点另一个方向位数和 + 变化量)。不论是向右还是向下移动;
- 不能移到方格外以及不能进入行坐标和列坐标的数位之和大于k的格子、移动过的方格就不能再计算 表示 终止条件。
- **重点:**重点是计算前一个点到下一个点两下标数位和,以便于深度优先遍历时的递归推导,或者广度优先遍历时存储下一层的点的数位和的计算。
- 访问的数组标记。vector<vector>使用二维数组来标记。
2. 下标位数和递推
解答过程见此解析:剑指 Offer 13. 机器人的运动范围( 回溯算法,DFS / BFS ,清晰图解)
3.深度优先遍历
- 同一结点处走向不同方向的函数。在一个结点上可能很多方向都满足条件,深度优先遍历是先沿着一个方向走到底,而再回溯时再沿着其他方向走。其使用递归实现。
1)如统计同一结点处不同方向的数值,return 处的处理不同方向的函数可以是相加减的形式联接的。
return 1 + dfs(left) + (right);
上式是将总问题进行了分解,分解为当前节点以及站在当前节点走向不同的方向各自的贡献。1表示当前节点的贡献,dfs(left)表示第一个方向的贡献,dfs(right)表示第二个方向的贡献。
2)如确定有没有、是不是等返回布尔类型的问题,return处的处理不同方向的函数可以是 并&&或||的形式联接。如果是只要找到一个满足的即可,使用||(一个true,则全为true),如果是只要找到一个不满足的即可,使用&&(一个false,则全为false)。
3)回溯的过程也可以不同的方向之间并没有联系。可以并列写。
int x = dfs(left);
int y = def(right);
- 停止条件。梳理递归问题的停止条件后,一般写在递归函数体的开头,如果不满足条件,就如何如何。比如二叉树中如果为空,return nullptr。
- 可行性剪枝。放在函数体中,经过判断后,是否跳过后续的递归调用,如果跳过就是进行了剪枝操作。一般使用if() continue。
4.广度优先遍历
- 广度优先遍历按照平推的方式向前搜索。与二叉树中的广度优先遍历相同,二叉树在访问当前结点的同时要将其左右子节点存入队列中,并且是循环的方式将结点弹出队列,并保存其子节点。
- 使用广度优先遍历时,需要准备:
1)考虑每个节点含有的信息。如果不像二叉树的结点信息均是在对象内部保存的话,就需要自行包装结点信息。如queue<vector>等,每个节点对应一个vector。
2)创建队列保存节点信息。
3)当队列为空时,停止循环访问。
4)循环体中,弹出节点,是否满足条件,满足就继续入队,否则就不入队。
//模板
queue<T> queue1;
queue1.push(data1);
while(queue1.size()>0){
T data =queue1.front();
queue1.pop();
//其他处理
if(condition){//满足条件,就入队
queue1.push(data2);
queue1.push(data3);
...
}
}
三、代码
深度优先:
class Solution {
public:
int movingCount(int m, int n, int k) {
this->m = m;this->n = n;this->k = k;
vector<vector<bool>> visited(m, vector<bool>(n, false));
return dfs(0, 0, 0, 0, visited);
}
private:
int m, n, k;
int dfs(int i, int j, int si, int sj, vector<vector<bool>>& visited){
if(i>=this->m || j>=this->n || si+sj > this->k || visited[i][j]) return false;
visited[i][j] = true;
return 1 + dfs(i+1, j, (i+1)%10? si+1 : si-8, sj, visited) +
dfs(i, j+1, si, (j+1)%10? sj+1:sj-8, visited);
}
};
广度优先:
class Solution {
public:
int movingCount(int m, int n, int k) {
queue<vector<int>> que;
vector<vector<bool>> visited(m, vector<bool>(n, false));
que.push({0, 0, 0, 0});
int res = 0, i, j, si, sj;
while(que.size()>0){
vector<int> tmp = que.front();
que.pop();
i = tmp[0]; j=tmp[1]; si = tmp[2]; sj = tmp[3];
if(i>=m || j>=n || si+sj>k || visited[i][j]) continue;//可行性剪枝
visited[i][j] = true;
++res;
que.push({i+1, j, (i+1)%10? si+1 : si-8, sj});
que.push({i, j+1, si, (j+1)%10? sj+1 : sj-8});
//按照这样的压入方法,是存在重叠的,尤其是第一个点的右方和下一个点的下方可能相同
}
return res;
}
};