pandas入门学习笔记

目录

一、pandas介绍

二、pandas应用

(一)pandas的打开

(二)数据加载及数据处理

2.1载入数据

2.1.1导入numpy和pandas

2.1.2载入数据

2.1.3逐块读取

2.1.4改表头

2.2初步观察

2.2.1查看数据的基本信息

2.2.2观察表格前几行的数据

2.2.3判断数据是否为空

2.3保存数据

2.3.1将数据保存为一个新文件

2.4了解数据类型

2.4.1了解DateFrame和Series

2.4.2查看DateFrame数据的每列的名称

2.4.3查看一列中的所有值

2.4.4对比两文件有哪些多出的列并将多出的列删除

2.4.5隐藏列元素

2.5筛选的逻辑

2.5.1筛选数据并显示

2.5.2筛选数据并将符合条件的数据重命名

2.5.3显示某一行的数据

2.5.4使用loc方法显示某行某列数据

2.5.5使用iloc方法显示某行某列数据

2.6了解数据

2.6.1对数据进行排序,要求升序

2.6.2利用pandas进行算术计算

2.6.3用pandas describe()函数查看数据基本统计信息


一、pandas介绍

pandas主要是Python语言的一个扩展程序库,提供了高效、灵活、易用的数据结构,专门用于数据操作和分析。

Pandas的主要功能包括:

数据清洗:处理缺失数据、重复数据、异常值等。

数据选择和过滤:通过标签或位置选择数据子集。

数据操作:合并、连接、重塑和透视数据。

数据分组和聚合:按照某些标准分组数据,并进行聚合计算。

时间序列分析:支持时间索引和时间序列数据的处理。

数据输入和输出:读取和写入多种数据格式,如CSV文件、Excel表格、数据库等。

二、pandas应用

以文件http://"C:\Users\13834\Desktop\pandas入门\train.csv"为例

(一)pandas的打开

在终端中使用conda建立python环境,打开jupyter notebook。创建新notebook。

(二)数据加载及数据处理

2.1载入数据

2.1.1导入numpy和pandas
import numpy as np
import pandas as pd
2.1.2载入数据

(1)使用相对路径载入数据

df = pd.read_csv('文件名称')
df

(2)使用绝对路径载入数据

df = pd.read_csv(r'文件地址')

如果相对路径载入报错,尝试使用os。getcwd()查看当前工作目录。

2.1.3逐块读取

使用pd.read_csv('文件名',chunksize=n)   #n为任意数

chunker = pd.read_csv('./train.csv',chunksize=10)
for i in chunker:
    print(i)
2.1.4改表头

使用pd.read_csv('文件名',names=[替换的表头名])

df = pd.read_csv('train.csv',names=['乘客ID','是否幸存','乘客等级(1/2/3等舱位)','乘客姓名','性别','年龄','堂兄弟/妹个数','父母与小孩个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header = 0)
df

2.2初步观察

导入数据后,需要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等。

2.2.1查看数据的基本信息

使用df.info()

2.2.2观察表格前几行的数据

使用df.head(n)    #n为行数

2.2.3判断数据是否为空

为空的地方返回True,其余地方返回False

使用df.isnull().head(n)    #n为行数

2.3保存数据

2.3.1将数据保存为一个新文件

使用.to_csv('新文件名')

2.4了解数据类型

2.4.1了解DateFrame和Series

在 pandas 中,DataFrame 和 Series 是两种核心的数据结构,它们用于处理和分析数据。

Series 是 pandas 中的一维数据结构,类似于一维数组或列表。它由两部分组成:

索引:默认情况下,创建 Series 时会自动生成一个整数索引,也可以通过指定索引来创建具有自定义索引的 Series。

数据:存储在 Series 中的实际数据,可以是整数、浮点数、字符串、Python 对象等。

DataFrame是 pandas 中的二维数据结构,可以看作是由多个 Series 对象按列排列构成的表格。

每列可以是不同的数据类型(整数、浮点数、字符串等)。

可以通过行索引和列索引来访问和操作数据。

2.4.2查看DateFrame数据的每列的名称

使用.columns

2.4.3查看一列中的所有值

使用['列标题'].head(n)   #n为行数

使用.列标题.head(n)    #n为行数

2.4.4对比两文件有哪些多出的列并将多出的列删除

分析例子可知,测试集test_1.csv有一列是多余的

test1 = pd.read_csv('test_1.csv')
test1
del test1['a']
test1.head(3)

删除方法有

1.使用drop方式删除列

2.使用上述del方式

3.选择需要保留的列重新构建DataFrame

2.4.5隐藏列元素

使用.drop([列名称],axis=1).head(3)

2.5筛选的逻辑

2.5.1筛选数据并显示

以”Age“为筛选条件,显示年龄在10岁以下的人员信息

使用df[df['Age']<10].head(3)

2.5.2筛选数据并将符合条件的数据重命名

以”Age“为条件,将年龄在10岁以上和50岁以下的乘客信息,并将这个数据命名为midage

midage = df[(df['Age'])>10&(df['Age']<50)]
midage.head(3)
2.5.3显示某一行的数据

使用.loc[[n],['列名称']

2.5.4使用loc方法显示某行某列数据

使用.loc[[行数],[列名称]]

2.5.5使用iloc方法显示某行某列数据

使用.iloc[[行数],[列数]]

2.6了解数据

2.6.1对数据进行排序,要求升序
frame = pd.DataFrame(np.arange(8).reshape((2, 4)), 
                     index=['2', '1'], 
                     columns=['d', 'a', 'b', 'c'])
frame

 

pd.DataFrame() :创建一个DataFrame对象

np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7

index=['2, 1] :DataFrame 对象的索引列

columns=['d', 'a', 'b', 'c'] :DataFrame 对象的索引行

让行索引升序排列frame.sort_index()

让列索引升序排序frame.sort_index(axis=1)

让列索引降序排序frame.sort_index(axis=1,ascending=False)

让任选两列数据同时降序排序frame.sort_values(by=['a','c'],ascending=False)

2.6.2利用pandas进行算术计算
#建立一个例子
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
                     columns=['a', 'b', 'c'],
                     index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
                     columns=['a', 'e', 'c'],
                     index=['first', 'one', 'two', 'second'])
frame1_a
frame1_b
frame1_a+frame1_b
2.6.3用pandas describe()函数查看数据基本统计信息
#建立一个例子
frame2 = pd.DataFrame([[1.4, np.nan], 
                       [7.1, -4.5],
                       [np.nan, np.nan], 
                       [0.75, -1.3]
                      ], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
# 调用 describe 函数,观察frame2的数据基本信息


'''
count : 样本数据大小
mean : 样本数据的平均值
std : 样本数据的标准差
min : 样本数据的最小值
25% : 样本数据25%的时候的值
50% : 样本数据50%的时候的值
75% : 样本数据75%的时候的值
max : 样本数据的最大值
'''
frame2.describe()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值