用pycaffe绘制训练过程的loss和accuracy曲线 #!/usr/bin/env python# 导入绘图库from pylab import *import matplotlib.pyplot as plt# 导入"咖啡"import caffe# 设置为gpu模式caffe.set_device(0)caffe.set_mode_gpu()# 使用SGDSolver,即随机梯度下降算法
稀疏表示介绍 http://www.cnblogs.com/daniel-D/p/3222576.html 声明 之前虽然听过压缩感知和稀疏表示,实际上昨天才正式着手开始了解,纯属新手,如有错误,敬请指出,共同进步。主要学习资料是 Coursera 上 Duke 大学的公开课——Image and video processing, by Pro.Guillermo S
机器学习中导数最优化方法 1. 前言熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简单,coding 方便,是训练模型的必备利器之一。这篇博客主要总结一下使用导数的最优化方法的几个基本方法,梳理梳理相关的数学知识,本人也是一边写一边学,如有问题,欢迎指正,共同学习,一起进步。 2. 几个数学概念1) 梯度
计算Fisher vector和VLAD This short tutorial shows how to compute Fisher vector and VLAD encodings with VLFeat MATLAB interface.These encoding serve a similar purposes: summarizing in a vectorial statistic a number of l
高斯混合模型实践(Python) https://zhuanlan.zhihu.com/p/26328340'''高斯混合模型的实践(高斯一元分布)。对于由参数未知的K个高斯混合模型生成的数据集,利用EM算法可以对这K个高斯分布进行参数估计,并且可以知道两个模型的各自比重。因此还可以用来聚类。作者:胡亦磊'''import numpy as npimport matplotlib.pyplot as
caffe loss 损失权重问题 loss有一个细节问题就是Loss weights(损失权重),用来表征不同Layer产生的loss的重要性,Layer名称中以Loss结尾表示这是一个会产生loss的Layer,其他的Layer只是单纯的用于中间计算。任何一个Layer都可以被用于产生loss。反向迭代时,一个Layer可以赋予一个非零的loss weight,用于调整中间Layer产生的一些数据、参数。对于不止一个输出(t
图像的稀疏表示——ScSPM和LLC的总结 前言 上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。
损失函数可视化 1. 引言上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念:用于把原始像素信息映射到不同类别得分的得分函数/score function用于评估参数W效果(评估该参数下每类得分和实际得分的吻合度)的损失函数/loss function其中对于线性SVM,我们有:得分函数f(xi,W)=Wxi损失函数L=1N∑i
机器学习中的范数规则化之(二)核范数与规则项参数选择 机器学习中的范数规则化之(二)核范数与规则项参数选择zouxy09@qq.comhttp://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。 三、核范数 核范数||W||*是指
机器学习中的范数规则化之(一)L0、L1与L2范数 机器学习中的范数规则化之(一)L0、L1与L2范数zouxy09@qq.comhttp://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限
caffe 功能添加 在caffe 中实现Generative Adversarial Nets(二)目录目录一添加Loss Function gan_loss_layerhpp gan_loss_layercpp 二添加gan_gate_layer gan_gate_layerhpp gan_gate_layercpp 三添加rand_vec_layer rand_vec_layerhpp rand_ve
caffe源码解析 Caffe源码(十一):io.cpp 分析目录目录 简单介绍 主要函数ReadProtoFromTextFile 函数 WriteProtoToTextFile 函数 ReadProtoFromBinaryFile 函数 WriteProtoToBinaryFile 函数 ReadImageToCVMat 函数 matchExt 函数 CVMatToDatum 函数 ReadFileT
机器学习模型评价(Evaluating Machine Learning Models)-主要概念与陷阱 转:http://blog.csdn.net/heyongluoyao8/article/details/49408319
网络调参优化参考 1)Must Know Tips/Tricks in Deep Neural Networkshttp://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html2)卷积神经网络改进想法初探http://blog.csdn.net/u010402786/article/details/492727573)神经网络训练中
caffe调参经验资料文章 调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络?下面一些推荐的书和文章:调参资料总结Neural Network: Trick of the TradePractical Recommendations for Gradient-based Training of Deep Archite
损失函数 center_loss triplet loss A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现图像特征提取系列之PCAcenter loss代码注释(caffe新添加层)TensorFlow实现center loss