【用Python学习Caffe】6. 权重预设、预训练及微调

https://github.com/tostq/Caffe-Python-Tutorial

2017-08-12 18:46:26

阅读数 355

评论数 0

用pycaffe绘制训练过程的loss和accuracy曲线

#!/usr/bin/env python # 导入绘图库 from pylab import * import matplotlib.pyplot as plt # 导入"咖啡" import caffe # 设置为gpu模式 caffe.set...

2017-08-12 15:02:19

阅读数 503

评论数 0

稀疏表示介绍

http://www.cnblogs.com/daniel-D/p/3222576.html    声明  之前虽然听过压缩感知和稀疏表示,实际上昨天才正式着手开始了解,纯属新手,如有错误,敬请指出,共同进步。 主要学习资料是 Coursera 上 Duke 大学的...

2017-07-16 20:37:44

阅读数 1077

评论数 0

机器学习中导数最优化方法

1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简单,coding 方便,是训练模型的必备利器之一。这篇博客主要总结一下使用导数的最优化方法的几个基本方法,梳理梳理相关的数学知识,本人也是一边写...

2017-07-16 20:34:14

阅读数 349

评论数 0

计算Fisher vector和VLAD

This short tutorial shows how to compute Fisher vector and VLAD encodings with VLFeat MATLAB interface. These encoding serve a similar purposes:...

2017-07-16 19:45:25

阅读数 282

评论数 0

半监督学习研究

http://blog.csdn.net/daisy9212/article/details/49509899

2017-07-16 11:09:58

阅读数 383

评论数 0

高斯混合模型实践(Python)

https://zhuanlan.zhihu.com/p/26328340 ''' 高斯混合模型的实践(高斯一元分布)。 对于由参数未知的K个高斯混合模型生成的数据集,利用EM算法可以对这K个高斯分布进行参数估计,并且可以知道两个模型的各自比重。因此还可以用来聚类。 作者:胡亦磊 ''...

2017-07-15 22:15:15

阅读数 1186

评论数 1

caffe loss 损失权重问题

loss有一个细节问题就是Loss weights(损失权重),用来表征不同Layer产生的loss的重要性,Layer名称中以Loss结尾表示这是一个会产生loss的Layer,其他的Layer只是单纯的用于中间计算。任何一个Layer都可以被用于产生loss。反向迭代时,一个Layer可以赋予...

2017-07-10 22:09:16

阅读数 670

评论数 0

deep learning 自学习网络的Softmax分类器

http://blog.csdn.net/hlx371240/article/details/40201499

2017-07-10 16:21:51

阅读数 312

评论数 0

稀疏编码及其改进(ScSPM,LLC,super-vector coding)

http://blog.csdn.net/tiandijun/article/details/40681463

2017-07-10 15:00:38

阅读数 209

评论数 0

图像的稀疏表示——ScSPM和LLC的总结

前言        上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的...

2017-07-10 14:58:23

阅读数 263

评论数 1

损失函数可视化

1. 引言 上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念: 用于把原始像素信息映射到不同类别得分的得分函数/score function用于评估参数W效果(评估该参数下每类得分和实际得分的吻合度)的损失函数/loss func...

2017-07-09 16:28:01

阅读数 1141

评论数 0

机器学习中的范数规则化之(二)核范数与规则项参数选择

机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09          上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择。知识有限,以下都是我一些浅显的看法,...

2017-07-09 16:15:40

阅读数 251

评论数 0

机器学习中的范数规则化之(一)L0、L1与L2范数

机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09          今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊...

2017-07-09 16:14:58

阅读数 319

评论数 0

caffe 功能添加

在caffe 中实现Generative Adversarial Nets(二) 目录目录一添加Loss Function gan_loss_layerhpp gan_loss_layercpp 二添加gan_gate_layer gan_gate_layerhpp gan_gate_l...

2017-07-07 20:33:10

阅读数 253

评论数 0

caffe源码解析

Caffe源码(十一):io.cpp 分析 目录目录 简单介绍 主要函数ReadProtoFromTextFile 函数 WriteProtoToTextFile 函数 ReadProtoFromBinaryFile 函数 WriteProtoToBinaryFile 函数 ReadIm...

2017-07-07 20:31:31

阅读数 428

评论数 0

机器学习模型评价(Evaluating Machine Learning Models)-主要概念与陷阱

转:http://blog.csdn.net/heyongluoyao8/article/details/49408319

2017-07-07 15:40:06

阅读数 319

评论数 0

网络调参优化参考

1)Must Know Tips/Tricks in Deep Neural Networks http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html 2)卷积神经网络改进想法初探 http://blog.csdn.net/u...

2017-07-07 10:52:11

阅读数 205

评论数 0

caffe调参经验资料文章

调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结 Neural Network: Trick of the Trade Practical Recommen...

2017-07-07 10:28:44

阅读数 215

评论数 0

损失函数 center_loss triplet loss

A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现 图像特征提取系列之PCA center loss代码注释(caffe新添加层) TensorFlow实现cent...

2017-07-04 10:33:22

阅读数 2787

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭