【案例】知名银行客服中心——文本智能分析技术助力银行“数字新客服”建设...

本文案例展示了某知名银行如何借助佰聆数据的智能分析技术进行客服中心的数字化转型。通过深度文本挖掘和大数据分析,银行提高了服务转营销分析的准确性,实现了通话过程的精细化分析,以及专题分析的快速输出。项目面临的挑战包括非结构化数据处理、数据质量、文本理解和样本训练。应用了机器学习、深度学习和NLP技术,构建业务模型以支持服务和营销优化,最终提升客户满意度和营销效益。
摘要由CSDN通过智能技术生成


本项目案例由 佰聆数据 投递并参与由数据猿&上海大数据联盟联合推出的“行业盘点季之数智化转型升级”大型主题策划活动之《2021中国企业数智化转型升级创新服务企业》榜单/奖项的评选。





数据智能产业创新服务媒体

——聚焦数智 · 改变商业


当前的金融客服行业需要整体转型升级以应对挑战、拥抱机遇。新时代客服以数字化、智能化技术作为核心驱动力,实现服务管理模式的整体升级,并通过打通用户、服务业务之间的链接,重构服务价值链,最终实现数字经济下的用户价值最大化。相比于传统客服,新客服具有数智驱动、全程洞察、管理升级三大特色。

面对日益激烈的市场竞争和客户对服务需求的升级,本案例银行客户迫切需要从现有的海量客服录音数据中挖掘出服务过程中的隐含信息,实现对现有业务服务场景的智能定义、识别。并在此基础上,进行业务服务场景大数据分析,提高服务过程中的营销成功率,并进行服务优化,以此建设更懂客户、业务更高效、服务更标准的现代智能客服中心。在此背景下,佰聆数据与本案例银行客户携手合作,开展深度文本挖掘分析和数字化应用建设,助力该银行客服中心的数字化转型。

●实施时间

开始时间:2020年3月

模型开发完成:2020年9月

应用建设完成:2020年10月

项目主体完成:2020年11月

维保期至:2021年11月

应用场景

本案例涉及到3大应用场景:

1、服务转营销分析

分析用户偏好,提高营销转化率:通过大数据技术分析历史营销情况,找出营销机会点,构建综合方案推荐模型,“将合适的产品用合适的话术推荐给合适的客户”,捕捉营销提升的机会。

2、通话过程分析

从业务维度,情绪倾向,营销情况、客户反馈等维度对坐席通话过程进行分析,利用自然语言处理技术以及深度学习,实现对通话文本的结构化,在此基础上实现某一业务时长的分析,精细化静音分析等通话过程的分析。一方面精准识别热线用户进线意图,寻找优化机会点提升客户满意度,同时捕捉客户声音,推动服务/产品优化;另一方挖掘通话过程中业务处理问题点,进而准确定位,确立业务流程、人员技能、产品、系统等维度的优化提升措施,实现服务标准化体系的持续优化。

3、专题分析及可视化

建立专题分析模板,快速输出分析报告:通过模型数据产出集合,建立分析思维模板,将传统分析转化为管理技术,记录分析思路与探索轨迹,将业务分析从个人的思维式行为转化为体系化可管理行为,从而提升业务、产品、服务的分析效率,定期、快速输出关注项报告及改善方案。

面临挑战

1、主要分析数据有大量的非结构化通话文本数据,在文本数据的清洗和处理上,需要综合运用各种文本分析技术。

2、数据质量问题,由于对话文本数据是由相关的语音转文本工具转化出来,存在转化识别的准确率问题,转化后的文本数据可能存在各种信息错误的数据质量问题,需要大量的清洗工作;同时,由此带来的标注问题,在技术和管理层面都是极大的挑战。

3、由于涉及到通话文本,通话的双方,尤其是普通的客户而言,发问一般以相对口语化的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值