8.6 容斥原理的应用
先说一种写法:
首 先 P i 代 表 一 个 性 质 , N ( P i ) 代 表 集 合 中 具 有 该 性 质 的 一 个 元 素 。 ∣ A 1 ∩ A 2 ∩ A 3 ⋯ A i ∣ = N ( P 1 P 2 P 3 ⋯ P i ) 代 表 同 时 具 有 集 合 A 1 , A 2 , A 3 ⋯ A i 形 式 的 元 素 , 或 者 说 N ( P i ) 是 这 些 集 合 的 交 集 中 的 一 个 元 素 N ( P 1 ′ P 2 ′ P 3 ′ ⋯ P i ′ ) = N − ∣ A 1 ∪ A 2 ∪ A 3 ⋯ A i ∣ N 代 表 总 数 , 或 者 说 全 集 。 N ( P 1 ′ P 2 ′ P 3 ′ ⋯ P i ′ ) 代 表 不 具 有 A 1 , A 2 ⋯ A i 集 合 任 何 性 质 的 元 素 , 按 照 之 前 的 容 斥 原 理 N ( P 1 ′ P 2 ′ P 3 ′ ⋯ P i ′ ) = N − ∑ 1 ≤ i ≤ n N ( P i ) + ∑ 1 ≤ i < j ≤ n N ( P i P j ) − ∑ 1 ≤ i < j < k ≤ n N ( P i P j P k ) + ⋯ + ( − 1 ) n N ( P 1 P 2 P 3 ⋯ P n ) 首先 P_i 代表一个性质,N(P_i)代表集合中具有该性质的一个元素。\\ |A_1 \cap A_2 \cap A_3 \cdots A_i |=N(P_1 P_2 P_3 \cdots P_i) 代表同时具有集合A_1,A_2,A_3 \cdots A_i形式的元素,\\ 或者说N(P_i)是这些集合的交集中的一个元素\\ N(P_1\prime P_2 \prime P_3 \prime \cdots P_i \prime)=N-|A_1 \cup A_2 \cup A_3 \cdots A_i|\\ N代表总数,或者说全集。N(P_1\prime P_2 \prime P_3 \prime \cdots P_i \prime)代表不具有A_1,A_2\cdots A_i集合任何性质的元素,按照之前的容斥原理\\ N(P_1\prime P_2 \prime P_3 \prime \cdots P_i \prime)=N-\sum_{1 \leq i \leq n}N(P_i)+\sum_{1 \leq i<j \leq n}N(P_iP_j)-\sum_{1 \leq i < j < k \leq n}N(P_iP_jP_k)+\cdots +(-1)^n N(P_1P_2P_3 \cdots P_n) 首先Pi代表一个性质,N(Pi)代表集合中具有该性质的一个元素。∣A1∩A2∩A3⋯Ai∣=N(P1P2P3⋯Pi)代表同时具有集合A1,A2,A3⋯Ai形式的元素,或者说N(Pi)是这些集合的交集中的一个元素N(P1′P2′P3′⋯Pi′)=N−∣A1∪A2∪A3⋯Ai∣N代表总数,或者说全集。N(P1′P2′P3′⋯Pi′)代表不具有A1,A2⋯Ai集合任何性质的元素,按照之前的容斥原理N(P1′P2′P3′⋯Pi′)=N−1≤i≤n∑N(Pi)+1≤i<j≤n∑N(