映射与函数

映射

映射概念

定义:设 X 、 Y X、Y XY是两个非空集合,如果存在一个法则 f f f,使得对 X X X中每个元素按法则 f f f,在 Y Y Y中有唯一确定的元素 y y y与之对应,那么称 f f f为从 X X X Y Y Y的映射,记作
f : X → Y , f:X\rightarrow Y, f:XY,
其中 y y y成为元素 x x x(在映射 f f f下)的像,并记作 f ( x ) f(x) f(x),即
y = f ( x ) , y=f(x), y=f(x),
而元素 x x x称为元素 y y y(在映射 f f f下)的一个原像;集合 X X X成为映射f的定义域,记作 D f D_f Df,即 D f = X D_f=X Df=X X X X中所有元素的像所组成的集合称为映射 f f f的值域,记作 R f R_f Rf f ( X ) f(X) f(X),即
R f = f ( X ) = f ( x ) ∣ x ∈ X , R_f=f(X)={f(x)|x\in X}, Rf=f(X)=f(x)xX,
注意事项:

  1. 构成一个映射必须具备以下三个要素:

    (1)集合X,即定义域 D f = X D_f=X Df=X

    (2)集合Y,即值域的范围: R f ⊂ Y R_f\subset Y RfY

    (3)对应法则 f f f,使对每个 x ∈ X x\in X xX,有唯一确定的$y=f(x) $与之对应

  2. (1)对每个 x ∈ X x\in X xX,元素x的像y是唯一的;

    (2)对每个 y ∈ R f y\in R_f yRf,元素y的原像不一定是唯一的;

    (3)映射f的值域 R f R_f Rf是Y的一个子集,即 R f ⊂ Y R_f\subset Y RfY,不一定 R f = Y R_f=Y Rf=Y

逆映射与复合映射

定义:设f是X到Y的单射,则由定义,对每个 y ∈ R f y\in R_f yRf,有唯一的 x ∈ X x\in X xX,适合 f ( x ) = y f(x)=y f(x)=y,于是,我们可定义一个从 R f R_f Rf X X X的新映射 g g g,即
g : R f → X , g:R_f\rightarrow X, g:RfX,
对每个 y ∈ R y\in R yR,规定 g ( y ) = x g(y)=x g(y)=x,这x满足 f ( x ) = y f(x)=y f(x)=y.这个映射g称为f的逆映射,记作 f − 1 f^{-1} f1,其定义域 D f − 1 = R f D_{f^{-1}}=R_f Df1=Rf,值域 R f − 1 = X R_{f^{-1}}=X Rf1=X.

按照上述定义,只有单射才存在逆映射

设有两个映射
g : X → Y 1 , f : Y 2 → Z , g:X\to Y_1, f:Y_2\to Z, g:XY1,f:Y2Z,
其中 Y 1 ⊂ Y 2 Y1\subset Y_2 Y1Y2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个 x ∈ X x\in X xX映成 f [ g ( x ) ] ∈ Z f[g(x)]\in Z f[g(x)]Z.显然,这个对应法则确定了一个从X到Z的映射,这个映射成为映射g和f构成的复合映射,记作 f ∘ g f\circ g fg,即
f ∘ g : X → Z , ( f ∘ g ) ( x ) = f [ g ( x ) ] , x ∈ X . f\circ g:X\to Z, (f\circ g)(x)=f[g(x)],x\in X. fg:XZ,(fg)(x)=f[g(x)],xX.
由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域 R g R_g Rg必须包含在f的定义域内,即 R g ⊂ D f R_g \subset D_f RgDf。否则,不能构成复合映射。

函数

定义:设数集 D ⊂ R D\subset R DR,则称映射 f : D → R f: D\rightarrow R f:DR为定义在D上的函数,通常简记为
y = f ( x ) , x ∈ D , y=f(x), x\in D, y=f(x),xD,
其中x称为自变量,y成为因变量,D成为定义域,记作 D f D_f Df,即 D f = D D_f=D Df=D.

函数的定义中,对每个 x ∈ D x\in D xD,按对应法则f,总有唯一确定的值y与之对应,这个值称为函数f在x处的函数值,记作 f ( x ) f(x) f(x),即 y = f ( x ) y=f(x) y=f(x)。因变量y与自变量x之间的这种依赖关系,通常称为函数关系。函数值 f ( x ) f(x) f(x)的全体所构成的集合称为函数f的值域,记作 R f R_f Rf f ( D ) f(D) f(D),即
R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } . R_f=f(D)=\{y|y=f(x), x\in D\}. Rf=f(D)={yy=f(x),xD}.
需要指出,按照上述定义,记号 f f f f ( x ) f(x) f(x)的含义是有区别的:前者表示自变量x和因变量y之间的对应法则,而后者表示与自变量x对应的函数值。但为了叙述方便,习惯上常用记号 “ f ( x ) , x ∈ D ” “f(x),x\in D” f(x),xD来表示定义在D上的函数。

函数是从实数集到实数集的映射,其值域总在R内,因此构成函数的要素是:定义域 D f D_f Df及对应法则 f f f。如果两个函数的定义域相同,对应法则也相同,那么这两个函数就是相同的,否则就是不同的。

函数的几种特性

函数的有界性

定义 设 y = f ( x ) y=f(x) y=f(x)在集合X上有定义,如果存在正数M,使得对任意的 x ∈ X x\in X xX,都有 ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M,则称 f ( x ) f(x) f(x)在X上有界。

注:

(1)常见的有界函数有, ∣ s i n x ∣ ≤ 1 , ∣ c o s x ∣ ≤ 1 , ∣ a r c s i n x ∣ ≤ π 2 , ∣ a r c t a n x ∣ ≤ π 2 |sin x|\le 1, |cos x|\le 1,|arcsin x|\le \frac \pi 2,|arctan x|\le \frac \pi 2 sinx1cosx1arcsinx2πarctanx2π

(2)对于任意正数M,若总存在 x 1 ∈ X x_1 \in X x1X,使得 f ( x 1 ) > M f(x_1)>M f(x1)>M,则称 f ( x ) f(x) f(x)在X上无界

(3)函数的有界(无界)是针对具体区间而言的。

如:
f ( x ) = 1 x , x ∈ ( 1 , 2 ) f(x)=\frac 1 x, x\in (1,2) f(x)=x1,x(1,2)
在这个区间内,函数有界, f ( x ) ≤ 1 f(x)\le 1 f(x)1

如:
f ( x ) = 1 x , x ∈ ( 0 , 1 ) f(x)=\frac 1 x, x\in (0,1) f(x)=x1,x(0,1)
在这个区间内,函数无界

函数的单调性

定义 设 y = f ( x ) y=f(x) y=f(x)在区间I上有定义,如果对于区间I上任意两点 x 1 x_1 x1 x 2 x_2 x2,当 x 1 &lt; x 2 x_1&lt;x_2 x1<x2时,恒有 f ( x 1 ) &lt; f ( x 2 ) f(x_1)&lt;f(x_2) f(x1)<f(x2)(或 f ( x 1 ) &gt; f ( x 2 ) f(x_1)&gt;f(x_2) f(x1)>f(x2)),则称 f ( x ) f(x) f(x)在区间I上是单调增加(或单调减少)。

注:经常使用导数来判定函数在区间上的单调性。

函数的奇偶性

定义 设 y = f ( x ) y=f(x) y=f(x)的定义域D关于原点对称。如果对于任一 x ∈ D x\in D xD,恒有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),则称f(x)在D上是偶函数,如果恒有f(-x)=-f(x),则称f(x)在D上是奇函数。

注:

(1)奇 ± \pm ± 奇=奇函数, 偶 ± \pm ± 偶=偶函数, 奇 * 奇=偶函数, 偶 * 偶=偶函数, 奇 * 偶=奇函数

(2)常见的偶函数有: x 2 、 ∣ x ∣ 、 c o s x 、 f ( x ) + f ( − x ) x^2、|x|、cos x、f(x)+f(-x) x2xcosxf(x)+f(x)

​ 常见的奇函数有: s i n x 、 a r c s i n x 、 t a n x 、 a r c t a n x 、 l n ( x + 1 + x 2 ) 、 f ( x ) − f ( − x ) sinx、arcsinx、tanx、arctanx、ln(x+\sqrt {1+x^2})、f(x)-f(-x) sinxarcsinxtanxarctanxln(x+1+x2 )f(x)f(x)

(3)偶函数的图形关于y轴对称,奇函数的图形关于原点对称。

函数的周期性

定义 如果存在一个正数T,使得对于任一x,有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),则称f(x)是周期函数,T称为 f ( x ) f(x) f(x)的周期。

注:

常见的周期函数有,sinx,cosx以 2 π 2\pi 2π为周期, t a n x , ∣ s i n x ∣ , s i n 2 x tanx, |sinx|, sin2x tanx,sinx,sin2x π \pi π 为周期

狄利克雷函数
D ( x ) = { 1 , x ∈ Q , 0 , x ∈ Q C . D(x)=\begin{cases} 1, x\in Q,\\ 0, x\in Q^C. \end{cases} D(x)={1,xQ,0,xQC.
这是一个周期函数,任何正有理数r都是它的周期。因为不存在最小的正有理数,所以没有最小周期。

反函数

定义 设 y = f ( x ) y=f(x) y=f(x)的定义域为D,值域为 R f R_f Rf,如果对于任一 y ∈ R f y\in R_f yRf,有唯一确定的 x ∈ D x\in D xD,使得 y = f ( x ) y=f(x) y=f(x),则称 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) y = f ( x ) y=f(x) y=f(x)的反函数。

注:
(1)单调函数必有反函数。

如$y=x^3 \rightarrow x=\sqrt [3]y $

(2)有时将 y = f ( x ) y=f(x) y=f(x)的反函数也写成 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x),在同一坐标系中, y = f ( x ) y=f(x) y=f(x) y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)的图形关于直线y=x对称,而 y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)的图形是重合的。

(3) f [ f − 1 ( x ) ] = x , f − 1 [ f ( x ) ] = x f[f^{-1}(x)]=x, f^{-1}[f(x)]=x f[f1(x)]=xf1[f(x)]=x

复合函数

定义 设 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_f Df,函数 u = g ( x ) u=g(x) u=g(x)的定义域为 D g D_g Dg,且其值域 R g ⊂ D f R_g\subset D_f RgDf,则称 y = f [ f ( x ) ] y=f[f(x)] y=f[f(x)]为函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)的复合函数。

初等函数

定义 由常数和基本初等函数经过有限次的四则运算和有限次的复合运算得到的且能用一个式子表示的函数,称为初等函数。

注:幂函数、指数函数、对数函数、三角函数及反三角函数称为基本初等函数。

需要熟悉图形、性质及常用变形公式

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值