【离散数学】基本结构——集合、函数、序列、矩阵

离散数学第二篇,首先讨论常用工具——集合,并讨论在集合基础之上的一系列结构:函数、序列、矩阵、关系等。所有内容在以前的知识体系中均有涉猎,此处是从集合的角度去考虑这些内容。我认为其中要数集合的基数这一小节中可数集和不可数集的部分最为抽象。这里仅仅涉及一些常用定义性质和精彩的证明。

首先,常用符号一览:

符号 含义 L a T e X LaTeX LaTeX(仅符号)
x ∈ A x\in A xA x属于集合A \in
x ∉ A x \notin A x/A x不属于集合A \notin
$ {a_1,a_2,a_3,\dots,a_n}$ 集合的元素列表(列举法) -
$ {x\vert P(x)}$ 集合构造器记法(描述法) -
∅ \varnothing 空集 \varnothing
A ∩ B A\cap B AB A与B的交集 \cap
A ∪ B A\cup B AB A与B的交集 \cup
C ‾ \overline C C C的补集 \overline
A − B A-B AB A与B的差集 -
A ⊕ B A\oplus B AB A与B的对称差 \oplus
P ( S ) P(S) P(S) 集合S的幂集 -
∣ S ∣ \vert S\vert S 集合S的基数 -
S ⊆ T S\subseteq T ST S是T的子集 \subseteq
S ⊂ T S\subset T ST S是T的真子集 \subset
[ a , b ] , ( a , b ) [a,b],(a,b) [a,b],(a,b) 区间 -
( a 1 , a 2 , a 3 , … , a n ) (a_1,a_2,a_3,\dots,a_n) (a1,a2,a3,,an) 有序n元组 -
A × B A\times B A×B A和B的笛卡尔积 \times
ℵ 0 \aleph_0 0 可数无限集的基数(阿里夫零) \aleph
c c c 实数集的基数 -
f : A → B f:A\to B f:AB f是从A到B的函数 \to
f − 1 ( x ) f^{-1}(x) f1(x) 函数f的逆 -
f ∘ g f\circ g fg 函数f和g的合成 \circ
⌊ x ⌋ \lfloor x\rfloor x 向下取整函数 \lfloor \rfloor
⌈ x ⌉ \lceil x \rceil x 向上取整函数 \lceil \rceil
∑ \sum 累加 \sum
∏ \prod 累乘 \prod
A + B A+B A+B 矩阵A与B的和 -
A B AB AB 矩阵A与B的积 -
A − 1 A^{-1} A1 可逆矩阵A的逆 -
A T A^T AT A的转置矩阵 -
I n I_n In n阶单位阵
A ∧ B A\land B AB 0-1矩阵A与B的交 -
A ∨ B A\lor B AB 0-1矩阵A与B的并 -
A ⊙ B A\odot B AB 0-1矩阵A与B的布尔积 -
A [ n ] A^{[n]} A[n] 0-1矩阵A的n次布尔幂 -

集合

定义

集合(set)是对象/元素的一个无序的聚集。

通过列举出集合的所有元素的方式来表示集合的方法称为花名册方法(或列举法)。如 { a , b , c , d } \{a,b,c,d\} { a,b,c,d}

描述集合的另一种方式是集合构造器方法(或描述法),形如 A = { x ∣ P ( x ) } A= \{x| P(x)\} A={ xP(x)}。其中 P ( x ) P(x) P(x)是集合 A A A中元素 x x x 共有的特征。

常用集合

N N N:自然数集
Z Z Z:整数集
Z + Z^+ Z+:正整数集
Q Q Q:有理数集
R R R:实数集
R + R^+ R+:正实数集
C C C:复数集

区间

实数集的子集。
[ a , b ] = { x ∣ a ≤ x ≤ b } [a,b] = \{x|a\leq x \leq b\} [a,b]={ xaxb} ——闭区间
( a , b ) = { x ∣ a < x < b } (a,b) = \{x|a< x <b\} (a,b)={ xa<x<b} ——开区间
( a , b ] = { x ∣ a < x ≤ b } (a,b] = \{x|a<x \leq b\} (a,b]={ xa<xb}
[ a , b ) = { x ∣ a ≤ x < b } [a,b) = \{x|a\leq x < b\} [a,b)={ xax<b}

空集

∅ \varnothing 符号表示,代表不含任何元素的集合。

朴素集合论

这里主要讨论由德国数学家康托尔建立的朴素集合论。但朴素集合论是有缺陷的。

罗素悖论:将集合分为两类,一类以自身为元素,另一类不以自身为元素。令第一类所有集合为元素构成的集合为 P P P,第二类所有集合为元素构成的集合为 Q Q Q。那么问题来了, Q ∈ P Q\in P QP还是 Q ∉ P Q\notin P Q/P ? ? ?
Q ∈ P Q\in P QP,则由第一类集合定义,必有 Q ∈ Q Q\in Q QQ,而由第二类集合定义,如果 Q ∈ Q Q\in Q QQ,则一定有 Q ∉ Q Q\notin Q Q/Q,故矛盾。
Q ∉ P Q\notin P Q/P,则必定有 Q ∈ Q Q\in Q QQ,则满足第一类集合定义,所以 Q ∈ P Q\in P QP,故矛盾。

罗素悖论的一种通俗表示:只给不给自己刮脸的人刮脸的理发师究竟给不给自己刮脸呢?

罗素悖论的提出动摇了数学的基础,这被称为第三次数学危机。后来公理集合论的出现成功化解了危机,通过提出几条公理避免了一系列的悖论。由于这里并不会涉及到如此抽象的讨论,所以使用朴素集合论并不会有影响。

集合关系

子集: A A A B B B的子集,记作 A ⊆ B A\subseteq B AB 当且仅当 ∀ x ( x ∈ A → x ∈ B ) \forall x(x\in A \to x \in B) x(xAxB)
真子集: A A A B B B的真子集,记作 A ⊂ B A\subset B AB 当且仅当 ∀ x ( x ∈ A → x ∈ B ) ∧ ∃ x ( x ∈ B ∧ x ∉ A ) \forall x(x\in A \to x \in B) \land \exists x(x\in B \land x\notin A) x(xAxB)x(xBx/A)

显然, ∅ ⊆ A \varnothing \subseteq A A
∅ ⊂ A \varnothing \subset A A,其中 A ≠ ∅ A\neq \varnothing A=

集合的大小

集合 S S S 中元素个数称为集合 S S S 的基数(cardinality),记作 ∣ S ∣ |S| S

注:这里的基数(cardinality)与计数中进制的基数(radix)明显不是一个概念。

无限集:一个集合的元素个数不是有限的则称为无限集。

幂集

幂集(power set):集合 S S S 的所有子集作为元素构成的集合,记作 P ( S ) P(S) P(S)。幂集的基数 ∣ P ( S ) ∣ = 2 ∣ S ∣ |P(S)| = 2^{|S|} P(S)=2S(根据二项式定理得出,二项式定理下一篇介绍)。

如: P ( { ∅ } ) = { ∅ , { ∅ } } P(\{\varnothing\}) = \{ \varnothing ,\{\varnothing\}\} P({ })={ ,{ }}

集合运算

交集: A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } A\cap B = \{x|x\in A\land x\in B\} AB={ xxAxB},可扩展到多个集合。
并集: A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A\cup B = \{x|x\in A\lor x\in B\} AB={ xxAxB},同样可扩展到多个集合。
差集: A − B = { x ∣ x ∈ A ∧ x ∉ B } A-B = \{x|x\in A \land x\notin B\} AB={ xxAx/B}
补集: A ‾ = { x ∣ x ∈ U ∧ x ∉ A } = U − A \overline A = \{ x|x\in U \land x\notin A\} = U-A A={ xxUx/A}=UA ,其中 U U U是全集, A ‾ \overline A A称为 A A A相对全集 U U U的补集。
则A与B差集 A − B = A ∩ B ‾ A-B = A\cap \overline B AB=AB
对称差: A ⊕ B = { x ∣ ( x ∈ A ∪ B ) ∧ ( x ∉ A ∩ B ) } A\oplus B = \{x|(x\in A \cup B)\land (x\notin A\cap B)\} AB={ x(xAB)(

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值