目录
搜索树
概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
· 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
· 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
· 它的左右子树也分别为二叉搜索树
· 中序遍历的结果是有序的
int[] array = {5,3,4,1,7,8,2,6,0,9};
操作-查找
代码展示:
/**
* 在二叉搜索树里面搜索一个数字
*/
public boolean search(int val){
// 如果该树是一颗空树,那说明一定没有要查找的数据
if (root == null){
return false;
}
// 另外一种情况
TreeNode node = new TreeNode(val);
TreeNode cur = root;
while (cur!=null){
if (cur.val == node.val){
return true;
}
if (cur.val > node.val){
cur = cur.left;
}
if (cur.val < node.val){
cur = cur.right;
}
}
// 如果经过上述没找,那就说明这颗树中没有找到想要的节点
return false;
}
测试代码:
/**
* 检验二叉搜索树插入数据的
* @param args
*/
public static void main1(String[] args) {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(5);
binarySearchTree.insert(3);
binarySearchTree.insert(7);
binarySearchTree.insert(1);
binarySearchTree.insert(4);
binarySearchTree.insert(8);
binarySearchTree.insert(6);
binarySearchTree.insert(0);
binarySearchTree.insert(2);
binarySearchTree.insert(9);
binarySearchTree.postOrder2(binarySearchTree.root);
}
操作-插入
1. 如果树为空树,即根 == null,直接插入
2. 如果树不是空树,按照查找逻辑确定插入位置,插入新结点
代码展示:
/**
* 在二叉搜索树里面搜索一个数字
*/
public boolean search(int val){
// 如果该树是一颗空树,那说明一定没有要查找的数据
if (root == null){
return false;
}
// 另外一种情况
TreeNode node = new TreeNode(val);
TreeNode cur = root;
while (cur!=null){
if (cur.val == node.val){
return true;
}
if (cur.val > node.val){
cur = cur.left;
}
if (cur.val < node.val){
cur = cur.right;
}
}
// 如果经过上述没找,那就说明这颗树中没有找到想要的节点
return false;
}
测试代码:
/**
* 检验二叉搜索树插入数据的
* @param args
*/
public static void main1(String[] args) {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(5);
binarySearchTree.insert(3);
binarySearchTree.insert(7);
binarySearchTree.insert(1);
binarySearchTree.insert(4);
binarySearchTree.insert(8);
binarySearchTree.insert(6);
binarySearchTree.insert(0);
binarySearchTree.insert(2);
binarySearchTree.insert(9);
binarySearchTree.postOrder2(binarySearchTree.root);
}
注:这个代码中的遍历是,中序遍历;
操作-删除(难点)
设待删除结点为 cur, 待删除结点的双亲结点为 parent
1. cur.left == null
1. cur 是 root,则 root = cur.right
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right
2. cur.right == null
1. cur 是 root,则 root = cur.left
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left
3. cur.left != null && cur.right != null【替罪羊的方式】
1. 需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被 删除节点中,再来处理该结点的删除问题
/**
* 找指定节点的父亲节点
*/
public TreeNode searchParent(int val){
// 如果该树是一颗空树,那说明一定没有要查找的数据
if (root == null){
return null;
}
// 另外一种情况
TreeNode node = new TreeNode(val);
TreeNode cur = root;
TreeNode parent = null; // 记录父节点
while (cur != null) {
if (cur.val > val) {
parent = cur; // 记录当前节点为父节点
cur = cur.left;
} else if (cur.val < val) {
parent = cur; // 记录当前节点为父节点
cur = cur.right;
} else {
return parent; // 找到了,返回父节点
}
}
// 如果经过上述没找,那就说明这颗树中没有找到想要的节点
return null; //没有找到指定节点
}
/**
* 从二叉搜索树中删除元素
*/
public void delect(int val){
// 如果这是颗空树,那说明没什么好删的
if (root == null){
return;
}
TreeNode cur = search(val); // 想要删除的节点
TreeNode parent = searchParent(val); // 找到想伤处节点的父亲节点
// 1.cur.left == null
if (cur.left == null){
if (cur == root){
root = cur.right;
}else {
if (cur == parent.left){
parent.left = cur.right;
}
if (cur == parent.right){
parent.right = cur.right;
}
}
}
// 2.cur.right == null
if (cur.right == null){
if (cur == root){
root = cur.left;
}else {
if (cur == parent.left){
parent.left = cur.left;
}
if (cur == parent.right){
parent.right = cur.left;
}
}
}
// 3.cur.left != null && cur.right != null【难点】
if (cur.left != null && cur.right != null){
TreeNode tp = cur;
TreeNode t = cur.right;
while (t.left!=null){
tp = t;
t = t.left;
}
cur.val = t.val;
if (t == tp.left){
tp.left = t.right;
}else {
tp.right = t.right;
}
}
}
性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树: