对抗训练及虚拟对抗

本文介绍了对抗训练的基本概念,包括其数学表达式和FGM方法,以及虚拟对抗训练,一种不需要标签的增强模型鲁棒性的技术。虚拟对抗通过调整目标函数和使用KL散度来实现,可用于预训练和微调阶段。
摘要由CSDN通过智能技术生成

对抗训练

从苏神blog整理,记录下加深记忆,原始链接
虚拟对抗训练即在模型的训练过程中对输入 x x x人为的增加扰动,增加最终模型的鲁棒性。最早的对抗训练可以统一写成如下格式:
min ⁡ θ E ( x , y )   D [ max ⁡ △ x ∈ Ω L ( x + △ x , y ; θ ) ] \min_\theta E_{(x, y)~D}[\max_{\triangle x \in \Omega}L(x+\triangle x, y; \theta)] θminE(x,y) D[xΩmaxL(x+x,y;θ)]
其中 D D D代表训练集, x x x代表输入, y y y代表标签, θ \theta θ是模型参数, L ( x , y ; θ ) L(x, y;\theta) L(x,y;θ)是单个样本的loss, △ x \triangle x x是对抗扰动, Ω \Omega Ω是扰动空间。这个统一格式有论文《Towards Deep Learning Models Resistant to Adversarial Attacks》提出。
分步理解如下:
在这里插入图片描述
如上图所示, △ x \triangle x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值