对抗训练
从苏神blog整理,记录下加深记忆,原始链接
虚拟对抗训练即在模型的训练过程中对输入 x x x人为的增加扰动,增加最终模型的鲁棒性。最早的对抗训练可以统一写成如下格式:
min θ E ( x , y ) D [ max △ x ∈ Ω L ( x + △ x , y ; θ ) ] \min_\theta E_{(x, y)~D}[\max_{\triangle x \in \Omega}L(x+\triangle x, y; \theta)] θminE(x,y) D[△x∈ΩmaxL(x+△x,y;θ)]
其中 D D D代表训练集, x x x代表输入, y y y代表标签, θ \theta θ是模型参数, L ( x , y ; θ ) L(x, y;\theta) L(x,y;θ)是单个样本的loss, △ x \triangle x △x是对抗扰动, Ω \Omega Ω是扰动空间。这个统一格式有论文《Towards Deep Learning Models Resistant to Adversarial Attacks》提出。
分步理解如下:
如上图所示, △ x \triangle x