【教程】面向对象提取(2)-建设用地

本文介绍如何使用eCognition9.0通过面向对象的方法从Landsat8影像中提取建设用地。步骤包括确定影像范围、波段计算、地类提取和结果导出。在地类提取中,涉及植被剔除、基础分割和建设用地的具体提取策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本期主要讲述使用Landsat8影像通过面向对象的方法提取建设用地。

 

数据:Landsat8;行列号:122035;时间:20200422;

软件:eCognition9.0(软件获取关注公众号:生态与遥感应用,后台回复易康)

图片

建设用地的提取规则集总共分为4个部分:(1)确定影像范围(2)波段计算(3)地类提取(4)结果导出。

图片

(1)确定影像范围

为了去除背景值,仅对影像区内进行提取,这里首先进行确定影像提取的范围。影像提取范围的确定通过多阈值分割的方法进行,主要是基于影像像元值大于0的特点,通过定义任意波段大于0,即可得到影像作业区。

图片

(2)波段计算

为了方便后续的提取工作,这里对常用的一些阈值方法进行构建成波段的形式。本规则集中主要构建了NDVI、NDWI、亮度以

<think>嗯,用户想在ENVI软件中进行水体提取,我得先回忆一下相关的步骤。首先,我记得ENVI通常使用光谱指数法,比如NDWI(归一化水体指数)。用户提到的引用内容里,引用[1]提到了指数法提取水体,步骤类似其他地类提取。所以应该先介绍NDWI的计算方法。 接下来,用户可能需要详细的操作步骤。比如加载Landsat影像,预处理辐射定标和大气校正,这可能是必要的预处理步骤,但用户的问题可能已经假设数据准备好了?或者是否需要包括这些步骤?根据引用[3]提到的是基于Landsat的流程,可能需要先进行预处理,比如辐射定标和FLAASH大气校正。不过用户的问题直接问提取方法,可能预处理步骤需要简要提及,但重点在指数计算和二值化。 然后,计算NDWI的公式,记得用行内数学公式,所以用$...$包裹,比如$(Green - NIR) / (Green + NIR)$。然后阈值分割,这里可能需要用户调整阈值,引用[2]提到颜色切片,可能是在分类后调整显示颜色,方便查看结果。 之后,分类后处理,比如用Classification to Vector工具导出矢量,如引用[3]所述。此外,可能需要提到后处理步骤,比如去除小斑点,使用Majority/Minority分析。这部分是否在用户的引用里有提到?引用[3]提到了导出矢量,所以需要包括这一步。 用户提供的引用中有提到Ecognition面向对象的方法,但当前问题集中在ENVI,所以可能不需要展开。但相关问题里可以提到其他方法,比如面向对象的,作为后续问题。 现在,需要确保步骤符合用户提供的引用内容,并正确标注引用标记。比如在指数法步骤后添加[^1],在颜色修改部分引用[^2],在导出矢量时引用[^3]。 然后生成相关问题,可能包括其他指数(如MNDWI)、阈值选择方法、对比面向对象的方法、处理其他地类等。引用[1]提到其他地类的方法相同,所以相关问题可以涉及植被或建设用地提取。 最后,检查LaTeX格式是否正确,所有数学表达式是否正确使用$或$$,回答结构是否清晰,分步骤说明,并确保引用正确。</think>在ENVI软件中提取水体主要通过光谱指数法实现,以下是详细操作步骤: ### 一、NDWI指数法提取水体 1. **数据准备** - 加载Landsat影像(需包含绿光波段$Green$和近红外波段$NIR$) - 预处理包含辐射定标和FLAASH大气校正 2. **计算NDWI** - 公式:$$NDWI = \frac{Green - NIR}{Green + NIR}$$ - 操作路径:`ENVI工具箱 -> Band Algebra -> Band Math`输入公式`(float(b2)-b4)/(float(b2)+b4)`(假设b2为绿光波段,b4为近红外波段) 3. **阈值分割** - 对NDWI结果设置阈值(通常0.1-0.3),通过`Color Slice`工具将水体标记为红色[^2] - 二值化输出:`Classification -> Threshold Classification` 4. **后处理** - 使用`Classification -> Post Classification -> Majority/Minority Analysis`去除噪点 - 矢量导出:`Classification to Vector`生成EVF文件 ### 二、其他方法拓展 该方法可扩展至MNDWI、NDVI等指数,只需调整波段组合即可应用于植被、建设用地提取[^1]。 ```python # 伪代码示例:NDWI计算逻辑 green_band = image[:, :, 1] # 假设第2波段为绿光 nir_band = image[:, :, 4] # 假设第5波段为近红外 ndwi = (green_band - nir_band) / (green_band + nir_band + 1e-9) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生态与遥感应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值