自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 informer 基本原理

Informer作者经过观察对于每一个Q来说,只有一小部分的K于其它关系较强,所以要找出有用的Q值。长序列很难预测准, 首先做预测,然后用预测的结果再去预测,非常困难。例如源码输出结果:32,8,96,25表示8头注意力,96个Q分别跟25个K计算的内积。在96个Q中,选出来差异最大的25个(根据序列长度来定的一个参数值)现在要选出来的是一些重要的Q,正常情况需每一个Q跟96个K计算。LSTM:在长序列预测中,如果序列越长,速度越慢,效果越差。得到的QK内积为:32,8,25,96,就是只选了25个Q。

2023-09-08 07:08:48 1644

原创 Vision Transformer 简单实现

NLP中的Transformer对词进行Embedding,Vision Transformer中将图像进行分块(Patch),将每块进行展平(Flatten),对Patch进行Embedding。序列var越大,那么经过softmax越容易偏向大值假设序列(feature)Q和K每一位都是iid,并且是random variable(std=1,mean=0)。在单个序列中使用不同位置的注意力用于实现该序列的表征方法 ------ 《Attention is All You need》

2023-09-06 10:41:30 362 1

原创 目标检测小数据集使用旋转(90度、180度、270度)进行图像增广

目标检测图像旋转是一种常见的数据增强方法,它可以增加训练数据的多样性,提高模型的泛化能力。

2023-09-03 15:59:01 766 1

原创 手写 非极大值抑制(NMS)

目标检测中的非极大值抑制(NMS)是一种用于去除重叠边界框的方法。具体来说,NMS通过计算每个边界框与其他所有边界框之间的交并比(IoU),来确定它们之间的相似度。然后,它会选择具有最高得分的边界框,并将其添加到最终结果中。接下来,NMS会删除与当前最高得分边界框具有高IoU的所有其他边界框。这个过程会一直重复,直到所有边界框都被处理完毕。

2023-08-31 06:55:45 1096

原创 目标检测加权框融合 WBF(Weighted Boxes Fusion)

WBF(Weighted Boxes Fusion)加权边界框融合算法解读,竞赛刷分必备。

2023-08-30 07:51:11 696 1

原创 PyTorch实现断点继续训练(notebook源码下载)

训练过程中很重要的断点继续训练

2023-08-28 15:16:06 173 1

原创 深度学习常用训练技巧

一些炼丹的trick,已有20种,正在补充完善。

2023-08-27 20:42:33 326 1

原创 7. Yolov8 CopyPaste数据增强详解

CopyPaste数据增强

2023-08-26 18:48:29 2428 5

原创 Yolov6、Yolov7重参数化 RepConv 详解(代码可直接使用)

模型重参化技术,代码很清晰

2023-08-24 09:17:29 8840 3

原创 6. Yolov8 LetterBox数据增强详解

LetterBox数据增强

2023-08-17 17:54:32 2824 6

原创 5. Yolov8 Mixup数据增强详解

mixup数据增强

2023-08-17 14:31:43 2966 7

原创 4. Yolov8 Mosaic数据增强详解

Mosaic数据增强

2023-08-16 18:41:14 9315 7

原创 Yolov8 模型解析函数 parse_model 讲解

如果不知道Yolov8如何解析的,推荐看一看此篇文章。

2023-08-15 16:01:23 2427 3

原创 3. Pytorch Dataset图像增强transforms重写

各种目标检测数据增强方法

2023-08-14 20:11:49 151

原创 3. Yolov8 ONNX模型部署源码详解

Yolov8的ONNX转换比较简单,仔细看下源码完全可以明白。

2023-08-14 13:28:04 888

原创 2. onnx 模型部署进阶

TorchScript 是一种序列化和优化 PyTorch 模型的格式,在优化过程中,一个torch.nn.Module 模型会被转换成 TorchScript 的 torch.jit.ScriptModule 模型。现在,TorchScript 也被常当成一种中间表示使用。 torch.onnx.export 中需要的模型实际上是一个 torch.jit.ScriptModule。而要把普通 PyTorch 模型转一个这样的 TorchScript 模型,有跟踪(trace)和记录(

2023-08-13 08:56:46 739 1

原创 1. onnx 模型部署初探

对于深度学习模型来说,模型部署指让训练好的模型在特定环境中运行的过程。但是深度学习模型是依赖一些框架编写的,这些框架(PyTorch、TensorFlow)由于依赖环境的限制,无法在手机、开发板等生产环境中安装。同时深度学习模型需要大量的算力才能满足实时运行的需求。模型的运行效率需要优化。为了让模型最终能够部署到某一环境上,开发者们可以使用任意一种深度学习框架来定义网络结构,并通过训练确定网络中的参数。

2023-08-10 16:24:30 297 1

原创 2. pytorch数据加载DataLoader

PyTorch 数据加载实用程序的核心是 torch.utils.data.DataLoader 类。它表示数据集的 Python 可迭代对象, 支持1.map样式和iterable样式的数据集;map风格的数据集是实现__getitem__()和__len__()协议的数据集, 并表示从索引/键到数据样本的映射。2.自定义数据加载顺序;3.自动划分batch;4.单进程和多进程数据加载;5.自动内存固定。

2023-08-09 12:46:41 130

原创 1. pytorch数据加载Dataset

PyTorch提供了两个数据预处理API: torch.utils.data.DataLoader 和 torch.utils.data。Dataset允许自己使用预加载的数据集和你自己的数据。Dataset 存储了样本及其相应的标签, DataLoader 将 Dataset 的数据包装成 batch, 以便于访问样本。我们自己的 Dataset 类必须自己实现这三个函数: __init__, __len__和__getitem__。

2023-08-08 13:32:24 108

原创 Yolox标签匹配算法SimOTA原理及代码解释

1.确定正样本候选区域(使用中心先验)2.计算每个样本对每个真实框的Reg + Csloss(Loss aware)3.使用每个真实框的预测样本确定它需要分配到的正样本数(Dynamic k)获取与当前真实框的ciou前10的样本;将这Top10样本的ciou求和取整,就为当前真实框的dynamic k,dynamic k最小保证为10这个数字并不敏感,在5-15之间几乎都没有影响4.为每个真实框取loss最小的前dynamick个样本作为正样本。

2023-08-06 15:57:20 472

原创 Yolov8标签匹配算法TaskAlignedAssigner原理及代码注解

此专栏分享常用的目标检测标签匹配算法,如有错误欢迎指出。

2023-08-05 10:49:39 6453

PyTorch实现断点继续训练

PyTorch实现断点继续训练

2023-08-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除