3. Pytorch Dataset图像增强transforms重写

        Dataset 首先读取图像、类别信息、坐标信息等,然后对图像做数据增强预处理位置信息等也需要进行相应调整。Compose类可以将不同的数据增强方法进行组合并依次进行数组增强操作

Compose类
class Compose(object):
    """将不同的增强方法组合在一起
    参数:
        transforms (List[Transform]): 进行组合的数据增强方法存储在列表里面
    例子:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, boxes=None, labels=None):
        for t in self.transforms:
            img, boxes, labels = t(img, boxes, labels)
        return img, boxes, labels
    
    def append(self, transform):
        self.transforms.append(transform)
数据增强方法目录

不同数据增强方法及其实现的目录将会在下面更新(更新ing)。

1. Mosaic
2. Mixup
3. LetterBox

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值