基于Pytorch的验证码识别模型应用

本文介绍了如何使用Python和PyTorch进行验证码识别,包括环境准备、代码示例(CPU和GPU版本)、以及如何通过Web框架部署。提供了一个实际运行效果良好的验证码识别模型和资源下载链接。
摘要由CSDN通过智能技术生成

前言

        在做OCR文字识别的时候,或多或少会接触一些验证码图片,这里收集了一些验证码图片,可以对验证码进行识别,可以识别4到6位,纯数字型、数字+字母型和纯字母型的一些验证码,准确率还是相当高,需要的可以下载使用。

准备工作 

1、Python环境,在Python官网下载安装

2、项目代码,下载地址在文章最后

代码量非常的少,可根据实际情况,通过fastapi、flask等web框架部署到服务器上。

 开始

以上准备工作完成后,就可以开始使用

1、下载依赖包
pip install pyaml
pip install torch
pip install opencv-python
2、编写预测代码,cpu中运行

这里传入的图片,可以是图片路径,也可以是通过cv2将图片转成mat后再传入。

import os
import sys

from core.model import OCRRecognition

if __name__ == '__main__':

    ocr = OCRRecognition("./core/model/pytorch_model.pt",
                         "./core/model/vocab.txt",
                         device="cpu"
                         )


    result = ocr("images/001.png")

    print(result)
3、gpu中运行

默认使用cpu运行,如果需要在gpu中运行,首先要配置GPU环境,可通过这篇文章进行配置【Ubuntu系统配置深度学习环境之nvidia显卡驱动和cuda安装】。

安装完成后,初始化方法改成:

    ocr = OCRRecognition("./core/model/pytorch_model.pt",
                         "./core/model/vocab.txt",
                         device="gpu"
                         )
4、运行结果展示

输入图片:

实际运行效果还不错。

完毕!!!

模型及代码下载:基于Pytorch的验证码识别模型应用资源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

番茄小能手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值