使用PyTorch识别简单验证码

前言

在这篇文章中,我们将演示如何使用PyTorch来识别简单的数字图形CAPTCHA。示例比较简单,主要演示图片预处理及简单的CNN网络。

环境准备

安装依赖包

conda install pytorch torchvision torchaudio cpuonly -c pytorch

sudo apt-get install libgl1  # for opencv
pip install requests matplotlib opencv-python

下载验证码图片(我们将验证码的值放在HTTP头中返回,方便的对原始数据集进行标注,更一般的情况需要对图片进行人工标注):

CAPTCHA_URL = 'https://captcha.tomo.wang'
r = requests.get(CAPTCHA_URL)
captcha = r.headers['X-Captcha']
with open('{}.png'.format(captcha), 'wb') as f:
    f.write(r.content)

图像处理及训练

准备

首先我们导入需要用到的包

import os
import re
import sys
import argparse
import glob
from io import BytesIO

import requests
import numpy as np
import cv2
import matplotlib.pyplot as plt

import torch
from torch.autograd import Variable
import torch.nn.functional as F

定义程序运行的相关常量

  • 字符个数
  • 验证码宽高
  • 裁剪后字符的宽高
NUM_CHARS = 4
CAPTCHA_WIDTH = 200
CAPTCHA_HEIGHT = 62
CH_WIDTH = 20
CH_HEIGHT = 28

CAPTCHA_DIR = './images'
TORCH_NET_PATH = 'captcha.torch'
BG_COLOR = (243, 251, 254)  # captcha backgroud color
BG_THRESHOLD = 245

BLANK_THRESHHOLD = 1
DOTS_THRESHOLD = 3
CH_MIN_WIDTH = 8

获取验证码图片并展示

def get_captcha():
    CAPTCHA_URL = 'https://captcha.tomo.wang'
    r = requests.get(CAPTCHA_URL)
    return r.content
img = get_captcha()
plt.imshow(plt.imread(BytesIO(img)))

<matplotlib.image.AxesImage at 0x7f1fcc4d7c40>

原始图片

一个验证码图片包含背景和不同颜色的字符,共四个字符,在训练前需要对其进行灰化处理,并进行切割

img_array = np.asarray(bytearray(img), dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_GRAYSCALE)
assert img.shape == (CAPTCHA_HEIGHT, CAPTCHA_WIDTH)
img = cv2.threshold(img, BG_THRESHOLD, 255, cv2.THRESH_BINARY_INV)[1]
plt.imshow(cv2.cvtColor(img, cv2.COLOR_GRAY2BGR))

<matplotlib.image.AxesImage at 0x7f1fcc3e7e80>

灰化处理后的图片

切割

将图片切割成四个独立的字符

def _denoise(img):
    img = cv2.threshold(img, BG_THRESHOLD, 255, cv2.THRESH_BINARY_INV)[1]
    return img


def _preprocess(img):
    img = img.copy()
    img = _denoise(img)
    return img


def find_filled_row(rows):
    for i, row in enumerate(rows):
        dots = np.sum(row) // 255
        if dots >= DOTS_THRESHOLD:
            return i
    assert False, 'cannot find filled row'


def pad_ch(ch):
    pad_w = CH_WIDTH - ch.shape[1]
    assert pad_w >= 0, 'bad char width'
    pad_w1 = pad_w // 2
    pad_w2 = pad_w - pad_w1
    pad_h = CH_HEIGHT - ch.shape[0]
    assert pad_h >= 0, 'bad char height'
    pad_h1 = pad_h // 2
    pad_h2 = pad_h - pad_h1
    return np.pad(ch, ((pad_h1, pad_h2), (pad_w1, pad_w2)), 'constant')


def segment(img):
    # Search blank intervals.
    img = _preprocess(img)
    dots_per_col = np.apply_along_axis(lambda row: np.sum(row) // 255, 0, img)
    blanks = []
    was_blank = False
    first_ch_x = None
    prev_x = 0
    x = 0
    while x < CAPTCHA_WIDTH:
        if dots_per_col[x] >= DOTS_THRESHOLD:
            if first_ch_x is None:
                first_ch_x = x
            if was_blank:
                # Skip first blank.
                if prev_x:
                    blanks.append((prev_x, x))
                # Don't allow too tight chars.
                x += CH_MIN_WIDTH
                was_blank = False
        elif not was_blank:
            was_blank = True
            prev_x = x
        x += 1
    blanks = [b for b in blanks if b[1] - b[0] >= BLANK_THRESHHOLD]
    # Add last (imaginary) blank to simplify following loop.
    blanks.append((prev_x if was_blank else CAPTCHA_WIDTH, 0))

    # Get chars.
    chars = []
    x1 = first_ch_x
    widest = 0, 0
    for i, (x2, next_x1) in enumerate(blanks):
        width = x2 - x1
        # Don't allow more than CH_WIDTH * 2.
        extra_w = width - CH_WIDTH * 2
        extra_w1 = extra_w // 2
        extra_w2 = extra_w - extra_w1
        x1 = max(x1, x1 + extra_w1)
        x2 = min(x2, x2 - extra_w2)
        ch = img[:CAPTCHA_HEIGHT, x1:x2]

        y1 = find_filled_row(ch[::])
        y2 = CAPTCHA_HEIGHT - find_filled_row(ch[::-1])
        ch = ch[y1:y2]

        chars.append(ch)
        if width > widest[0]:
            widest = x2 - x1, i
        x1 = next_x1

    # Fit chars into boxes.
    chars2 = []
    for i, ch in enumerate(chars):
        widest_w, widest_i = widest
        # Split glued chars.
        if len(chars) < NUM_CHARS and i == widest_i:
            ch1 = ch[:, 0:widest_w // 2]
            ch2 = ch[:, widest_w // 2:widest_w]
            chars2.append(pad_ch(ch1))
            chars2.append(pad_ch(ch2))
        else:
            ch = ch[:, 0:CH_WIDTH]
            chars2.append(pad_ch(ch))

    assert len(chars2) == NUM_CHARS, 'bad number of chars'
    return chars2
chars2 = segment(cv2.imdecode(img_array, cv2.IMREAD_GRAYSCALE))
fig = plt.figure()
for i, char in enumerate(chars2):
    a = fig.add_subplot(1, 4, i+1)
    plt.imshow(cv2.cvtColor(char, cv2.COLOR_GRAY2BGR))

切割后的图片

其他图片相关处理函数

def check_image(img):
    assert img is not None, 'cannot read image'
    assert img.shape == (CAPTCHA_HEIGHT, CAPTCHA_WIDTH), 'bad image dimensions'


def read_image_file(fpath):
    with open(fpath, 'rb') as f:
        return decode_image(f.read())


def decode_image(data):
    data = np.frombuffer(data, np.uint8)
    img = cv2.imdecode(data, cv2.IMREAD_GRAYSCALE)
    check_image(img)
    return img


def get_ch_data(img):
    data = img.flatten() & 1
    assert len(data) == NUM_INPUT, 'bad data size'
    return data

神经网络以及训练

# nn net define
NUM_INPUT = CH_WIDTH * CH_HEIGHT
NUM_NEURONS_HIDDEN = NUM_INPUT // 3
NUM_OUTPUT = 10


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
        self.out = torch.nn.Linear(n_hidden, n_output)   # output layer

    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.out(x)
        return x

基于之前获取的字符集开始训练

def train(captchas_dir):
    net = Net(n_feature=NUM_INPUT, n_hidden=NUM_NEURONS_HIDDEN, n_output=NUM_OUTPUT)

    optimizer = torch.optim.SGD(net.parameters(), lr=0.02, momentum=0.9)
    loss_func = torch.nn.CrossEntropyLoss()

    captchas_dir = os.path.abspath(captchas_dir)
    captchas = glob.glob(captchas_dir + '/*.png')

    x, y = [], []
    for i, name in enumerate(captchas):
        answer = re.match(r'.*(\d{4})\.png$', name)
        if not answer:
            continue
        answer = answer.group(1)
        fpath = os.path.join(captchas_dir, name)
        try:
            img = read_image_file(fpath)
            ch_imgs = segment(img)
            for ch_img, digit in zip(ch_imgs, answer):
                x.append(get_ch_data(ch_img))
                y.append(int(digit))
        except Exception as e:
            print('Error occured while processing {}: {}'.format(name, e))
        else:
            if (i + 1) % 25 == 0:
                print('{}/{}'.format(i + 1, len(captchas)))

    x, y = torch.from_numpy(np.array(x)).type(torch.FloatTensor), torch.from_numpy(np.array(y)).type(torch.LongTensor)
    x, y = Variable(x), Variable(y)

    for t in range(100):
        out = net(x)                 # input x and predict based on x
        loss = loss_func(out, y)     # must be (1. nn output, 2. target), the target label is NOT one-hotted

        optimizer.zero_grad()   # clear gradients for next train
        loss.backward()         # backpropagation, compute gradients
        optimizer.step()        # apply gradients

    return net
net = train(CAPTCHA_DIR)
25/400
50/400
75/400
100/400
125/400
150/400
175/400
200/400
225/400
250/400
275/400
300/400
325/400
350/400
375/400
400/400
print(net)
Net(
  (hidden): Linear(in_features=560, out_features=186, bias=True)
  (out): Linear(in_features=186, out_features=10, bias=True)
)

预测新图形

def predict(net, img_content):
    def get_digit(ch_img):
        x = torch.from_numpy(get_ch_data(ch_img)).type(torch.FloatTensor)
        output = net(Variable(x))
        _, predicted = torch.max(output.data, 0)
        # return str(Variable(predicted).data[0])
        return str(predicted.item())

    img = decode_image(img_content)
    ch_imgs = segment(img)
    return ''.join(map(get_digit, ch_imgs))
img_content = get_captcha()
plt.imshow(plt.imread(BytesIO(img_content)))
result = predict(net, img_content)
plt.title(result)
Text(0.5, 1.0, '1707')

预测结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值