保研面试/考研复试离散数学问题整理

本文详细介绍了离散数学中的基本概念,包括集合、幂集、笛卡尔乘积、等价关系、偏序关系、函数、代数系统、图论中的完全图和正则图等。此外,还探讨了如何判断无穷集合的大小、函数的特性以及命题和逻辑联结词。这些内容是理解计算机科学中算法和数据结构的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 离散数学学的什么?

集合论、代数系统、图论、数理逻辑等。

2. 什么是集合?

由离散个体构成的整体的称为集合,称这些个体为集合的元素

集合元素的性质:无序性、相异性、确定性、任意性

3. 什么是幂集?

集合的全体子集构成的集合叫做幂集 ∣ P ( A ) = 2 n ∣ |P(A)=2^n| P(A)=2n

4. 什么是笛卡尔乘积?

设有两个集合 A A A B B B,用 A A A B B B 中的元素组成有序偶,以 A A A 的元素作为有序偶的第一个分量,以 B B B 的元素作为有序偶的第二个分量,用这种方式所组成的有序偶的全体构成一个集合,称为 A A A B B B笛卡尔乘积,记为 A × B A\times B A×B.

5. 二元关系的定义

如果一个集合满足下列条件之一:

  1. 集合非空,且它的元素都是有序偶;
  2. 集合是空集;

则称该集合为一个二元关系,简称为关系,记作 R R R.

6. 等价关系和等价类的定义

  • 等价关系:设 R R R 为非空集合 A A A 上的一个关系,如果 R R R自反的对称的传递的,则称 R R R A A A 上的等价关系

  • 等价类:设 R R R 是集合 A A A 上的等价关系,与 A A A 中的一个元素 a a a 有关系的所有元素的集合叫做 a a a等价类

7. 偏序关系的定义

R R R 为非空集合 A A A 上的一个关系,如果 R R R自反的反对称的可传递的,则称 R R R 是集合 A A A 上的偏序关系,简称偏序,记作 “ ⩽ \leqslant ”.

  • 偏序关系 ⩽ \leqslant ——自反性、反对称性、传递性
  • 逆序关系 < < <——反自反、反对称性、传递性
    逆序关系的自反闭包是偏序关系。

8. 空关系

空关系是一种特殊关系,指关系集 A × B A×B A×B 中的子集 ϕ \phi ϕ非空集合中的空关系是反自反的、对称的、反对称的和传递的,但不是自反的;空集合中的空关系则是自反的、反自反的、对称的、反对称的和传递的

9. 怎么判断两个无穷集合的大小?

对无限集,通过建立一一对应的方法可以比较它们元素个数的大小(在集合论中称为势),以整数集 Z Z Z 和偶数集 A A A 为例,如果将 Z Z Z 中的每一个元素都乘以 2 2 2,则都可以在 A A A 中找到对应的偶数元素,即 Z Z Z A A A 中的元素是一一对应的,也就是说这两个集合是等势的。值得注意的是,偶数集合是整数集合的一部分,但它包含的元素个数却跟整数集合一样多。

10. 函数的概念

函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。【一个 x x x 只能对应一个 y y y,但多个 x x x 可以对应一个 y y y

11. 集合、关系与函数之间的关系?

  1. 集合是基础。
  2. 在集合之上建立关系,关系建立集合与集合间的联系。
  3. 函数是一种特殊的关系。

12. 单射、满射和双射的概念

设函数 f : X → Y , y = f ( x ) f: X \to Y, y = f(x) f:XY,y=f(x)

  1. 单射:任给 x 1 x_1 x1 x 2 x_2 x2 属于 X X X,若 x 1 ≠ x 2 x_1≠x_2 x1=x2,则 f ( x 1 ) ≠ f ( x 2 ) f(x_1)≠f(x_2) f(x1)=f(x2),称 f f f 为单射。
  2. 满射:任给 y y y 属于 Y Y Y,都存在 x x x 属于 X X X 使得 f ( x ) = y f(x) = y f(x)=y,称 f f f 为满射。
  3. 双射:若 f f f 既是单射又是满射,称 f f f 为双射,也叫一一对应。

或:

  1. 单射:若对 X X X 中任意两个不同元素 x 1 、 x 2 x_1、x_2 x1x2, x 1 x_1 x1不等于 x 2 x_2 x2,像 f ( x 1 ) f(x_1) f(x1) 不等于 f ( x 2 ) f(x_2) f(x2)
  2. 满射:就是说 Y Y Y 中的任何一个元素都是 X X X 中某元素的像。
  3. 双射:也叫一一映射,既满足单射又满足满射就叫双射。

或:

  1. injective,单射。指将不同的变量映射到不同的值的函数。
  2. onto,满射。指陪域等于值域的函数。即:对陪域中任意元素,都存在至少一个定义域中的元素与之对应。
  3. bijective,双射(也称一一对应):既是单射又是满射的函数。直观地说,一个双射函数形成一个对应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。

13. 代数系统的定义

非空集合 S S S S S S k k k 个一元或二元运算 f 1 , f 2 , . . . , f k f_1, f_2, ..., f_k f1,f2,...,fk 组成的系统称为代数系统,简称代数,记作 < S , f 1 , f 2 , . . . , f k > <S, f_1, f_2, ..., f_k> <S,f1,f2,...,fk>.

14. 代数系统同构

两个代数系统同构必须满足以下条件:

  1. 它们是同类型的代数系统;
  2. 它们的集合基数相等(等势);
  3. 运算定义法则相同。

15. 半群、群、交换群(阿贝尔群)

V = < S , ∘ > V=<S,\circ> V=<S,> 是代数系统, ∘ \circ 为二元运算,如果 ∘ \circ 运算满足结合律,则称 V V V半群

  • 半群——满足结合律的代数系统
  • ——具有单位元素逆元素的半群
  • 交换群/阿贝尔群:群 G G G 中的二元运算可交换

16. 格、有补格、布尔代数

  • :设 L L L 是非空集合, + + + ∘ \circ L L L 上的两个二元运算,如果它们满足交换律、结合律和吸收律,则称代数系统 < L , + , ∘ > <L,+,\circ> <L,+,>,也称代数格

  • 有补格:设 < L , ∧ , ∨ , 0 , 1 > <L,\land,\lor,0,1> <L,,,0,1> 是有界格,若 L L L 中所有元素都有补元存在,则称 L L L有补格

  • 如果一个格是有补分配格。则称它为布尔格布尔代数
    若代数系统 < B , ∗ , ∘ > <B,*,\circ> <B,,> 是代数系统,若 ∗ * ∘ \circ 满足:[1] 交换律 [2]分配律 [3]同一律 [4]互补律,则称 < B , ∗ , ∘ > <B,*,\circ> <B,,> 是一个布尔代数

17. n n n 阶完全图、 n n n 阶竞赛图、 n n n k k k 正则图

  • n ( n ⩾ 1 ) n(n\geqslant1) n(n1) 阶无向完全图——每个顶点与其余顶点均相邻的无向简单图,记作 K n K_n Kn.

  • n ( n ⩾ 1 ) n(n\geqslant1) n(n1) 阶有向完全图——每对顶点之间均有两条方向相反的有向边的有向简单图。

  • n ( n ⩾ 1 ) n(n\geqslant1) n(n1) 阶竞赛图——基图为 K n K_n Kn 的有向简单图。

  • n ( n ⩾ 1 ) n(n\geqslant1) n(n1) k k k 正则图——每个顶点都有相同数目的邻居的图。

18. 什么是哈密顿图?

能走出一条通过每个结点仅一次的回路。

平凡图是哈密顿图(平凡图:仅有一个结点的图)。

19. 什么是欧拉图?

能走出一条通过每条边仅一次的回路。

20. 命题

  • 命题:能够判断真假的陈述句。

  • 命题分类
    原子(简单)命题——不能再分解为更简单命题的命题。
    复合命题——由原子命题通过命题联结词构成的命题。

21. 联结词

  • ¬ \lnot ¬
  • 合取 ∧ \land
  • 析取 ∨ \lor
  • 蕴涵 → \to
  • 等价 ↔ \leftrightarrow
### 关于保研面试考研复试中涉及深度学习的常见问题 #### 深度学习基础知识 在保研面试考研复试中,深度学习是一个热门领域,通常会考察学生的基础理论知识及其实际应用能力。以下是常见的深度学习相关问题: 1. **什么是神经网络?其基本组成单元是什么?** 神经网络是一种模仿生物神经系统结构和功能的计算模型,由多个神经元通过连接权重组合而成。每个神经元接收输入信号并经过激活函数处理后输出[^2]。 2. **解释前向传播与反向传播的过程。** 前向传播是指数据从输入层传递到隐藏层再到输出层的过程;而反向传播则是利用链式法则计算损失函数相对于各参数的梯度,并更新这些参数以最小化误差[^4]。 3. **列举几种常用的优化器,并说明它们的特点。** - SGD (随机梯度下降): 更新速度快但易陷入局部最优解; - Adam: 结合了 Momentum 和 RMSprop 的优势,在大多数情况下表现良好; - Adagrad: 自适应调节学习率,适用于稀疏特征场景; - RMSProp: 改进了Adaptive Gradient Algorithm存在的问题,控制自适应学习速率变化幅度较小等问题。 4. **为什么需要使用激活函数?有哪些常用激活函数?** 使用激活函数是为了引入非线性因素使得模型能够更好地拟合复杂模式。一些典型的激活函数包括ReLU(Rectified Linear Unit),Sigmoid以及Tanh等。其中 ReLU 是目前最流行的激活函数之一因为它可以有效缓解梯度消失现象同时保持简单高效运算特性。 5. **过拟合如何定义? 如何解决这个问题?** 过拟合指的是当机器学习模型过度匹配训练样本而导致测试性能较差的现象。可以通过增加正则项(L1/L2范数约束)、Dropout技术或者早停机制等方式防止发生此类情况。 #### 实际应用场景分析 除了上述提到的概念外,考官还可能关注考生能否将所学应用于实践当中: 6. **卷积神经网络(CNNs)主要用途在哪里? 它们是如何工作的?** CNN广泛用于图像识别等领域因为它们具有自动提取空间层次特征的能力。典型架构包含交替排列卷积层(Max Pooling Layers),全连接层(Fully Connected Layer)以及其他组件构成整个框架体系. 7. **循环神经网络(RNNs)/长短时记忆网络(LSTMs)适合哪些任务类型?** RNN特别擅长处理序列型时间维度上的依赖关系比如自然语言处理(NLP). LSTM作为改进版本解决了传统单纯形式下长期记忆丢失难题从而提升了整体效果表现水平. 8. **生成对抗网络(GANs)的工作原理是什么样的呢? 可能存在什么挑战吗?** GAN由两个子模块——生成器(generator)与判别器(discriminator)-相互竞争共同进化直至达到纳什均衡状态为止;然而该方法也面临诸如收敛困难不稳定等诸多潜在风险隐患待进一步研究探讨解决方案. 9. **迁移学习的意义在哪方面体现出来? 给出几个例子说明一下吧!** 当目标域仅有少量标注样例可用时借助源域已有的大规模预训练好的权值初始化新项目可显著减少资源消耗加快开发周期降低成本投入产出比高等优点明显可见一斑如ImageNet上获得优秀成绩后再迁移到细粒度分类任务上去等等均属此列范畴之内. ```python import tensorflow as tf from tensorflow.keras import layers, models def create_cnn_model(): model = models.Sequential() # 添加卷积层 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) # 输出层 model.add(layers.Dense(10, activation='softmax')) return model ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一匹好人呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值