【剑指offer】5.2时间效率——面试题31:连续子数组的最大和

56 篇文章 0 订阅
43 篇文章 0 订阅

//题目描述
//
//HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
#include<vector>
#include<iostream>
using namespace std;
class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
		int n=array.size();
		if(n==0)return 0;
		int max=0x80000000;
		int s=0;
		for(int i=0;i<n;i++){
			if(array[i]+s<array[i])s=array[i];
			else
				s+=array[i];
			if(s>max)max=s;
		}
		return max;
    }
};
int main(){
	Solution test=Solution();
	vector<int>v;
	v.push_back(1);
	v.push_back(-2);
	v.push_back(3);
	v.push_back(10);
	v.push_back(-4);
	v.push_back(7);
	v.push_back(2);
	v.push_back(-5);
	cout<<test.FindGreatestSumOfSubArray(v);
	system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值