Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning

论文链接:Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection: ACM Transactions on Privacy and Security: Vol 24, No 4

Basic Information:

论文简要 :

  • 本研究提出了一种新的框架,通过对Windows Portable Executable文件格式进行实际的、功能保留的操作,实现了对机器学习模型的实际攻击,从而在白盒和黑盒攻击场景中取得更好的规避率和注入负载大小的平衡。

背景信息:

  • 论文背景: 机器学习在现代网络安全中变得越来越重要,但是对Windows恶意软件的检测仍然存在挑战。
  • 过去方案: 以往的攻击方法要么限制了攻击的有效性,要么需要运行计算密集型的验证步骤来丢弃在沙盒环境中无法正确执行的恶意软件变种。
  • 论文的Motivation: 为了克服现有攻击的局限性,本研究开发了一个统一的框架,不仅包括和概括了以往针对机器学习模型的攻击,还包括了三种基于实际、功能保留的操作对Windows Portable Executable文件格式的新攻击。

方法:

  • a. 理论背景:

    • 作者提出了一个名为RAMEN的通用框架,用于对基于静态代码分析的学习型Windows恶意软件检测器进行白盒和黑盒对抗攻击。他们还提出了三种新型攻击,分别为Full DOS、Extend和Shift,这些攻击改善了规避概率和操纵字节数之间的权衡。这些攻击的实现作为开源项目发布。此外,作者还确定了未来改进学习型Windows恶意软件检测器对抗攻击鲁棒性的研究方向。
  • b. 技术路线:

    • 作者描述了针对PE文件的字节攻击的实现算法。该算法以初始恶意软件样本、种群大小和查询预算为输入,并输出一个对抗样本。它使用遗传优化器来评估和选择候选向量,并应用交叉和突变函数来生成新的候选。然后,该算法提取对应于目标函数最小值的操纵向量,以创建最佳对抗样本。

结果:

  • a. 详细的实验设置:

    • 实验在Ubuntu 16.04.3 LTS服务器上进行,使用Intel Xeon E5-2630 CPU和64GB RAM。使用Windows 10虚拟机进行实际操纵的开发和验证。网络使用两个数据集进行训练:一个开源数据集EMBER和一个专有的生产级数据集。实验设置还涉及将所有策略编码到名为secml-malware的Python库中。
  • b. 详细的实验结果:

    • 对目标分类器的不同攻击性能使用接收器操作特性(ROC)曲线进行评估。计算了每个分类器在0.1%误报率(FPR)下的检测阈值和相应的检测率(DR)。结果显示,GBDT模型优于卷积网络,而MalConv模型与在EMBER上训练的DNN模型的结果相当。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YZRuin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值