- 博客(12)
- 收藏
- 关注
原创 非平行趋势下的双重差分敏感性分析:HonestDiD(stata教程)
HonestDiD:DID与事件研究的稳健推断工具包 该Stata工具包基于Rambachan & Roth (2022)的顶刊方法,通过两种创新方式量化平行趋势假设的潜在违背: 1️⃣ 相对大小限制:后处理期趋势偏离不超过预处理期最大偏离的M倍 2️⃣ 平滑性限制:趋势斜率变化幅度不超过M值 核心功能包括: • 构建考虑估计误差的稳健置信区间 • 自动计算结论成立的M值"崩溃点" • 支持非交错/交错DID设计,兼容主流命令 • 提供医疗补助扩张案例全流程分析 安装简便,支持W
2025-06-07 19:03:10
932
原创 Stata好写,太好写了!附《stata代码速查表》【最全stata指南】
阿水给大伙扒拉到了stata官网精心整理的一套 《stata代码速查表》,里面啥常用的数据分析、数据转换、数据可视化的stata代码,统统都有呢。大伙可以自个儿去下载打印
2025-06-05 21:59:16
568
原创 合成控制双重差分(SDID)可视化实战:用synthdid绘制顶刊因果推断图表
合成双重差分法(SDID)是一种估计面板数据中处理效应的新方法。本文介绍了SDID的R语言实现包,通过加州99号提案对香烟消费的影响案例演示其应用。该包可计算处理效应点估计值、构建置信区间,并提供丰富的数据可视化功能,包括平行趋势图、控制单元贡献图和预处理趋势检验。文章对比了SDID与传统双重差分法和合成控制法的估计结果
2025-06-02 21:05:51
1015
原创 多期双重差分法实用指南:从基础原理到方法改进与效应解析
多期双重差分法(DiD)研究新进展 传统双重差分法(DiD)主要用于两期两组的因果效应估计,而多期DiD研究正面临方法论革新。最新研究表明,标准双向固定效应(TWFE)回归在多期处理设计中存在严重缺陷,可能导致因果效应估计偏差。 核心问题在于TWFE方法会混合三种比较:新处理单元与"从未处理"组(有效)、与"尚未处理"组(有效),以及与"已经处理"组(无效)。后者会引入动态处理效应,使估计结果难以解释,甚至出现符号反转现象。
2025-05-29 10:43:28
929
原创 两时期DID的双重稳健估计:DRDID【附stata代码】
本文介绍了双重稳健差分法(DRDID)的理论基础与Stata实现。DID方法通过2×2设计(两组×两期)估计处理效应,需满足平行趋势假设。传统方法可能受异质性处理或协变量影响,而DRDID结合回归与逆概率加权双重稳健估计,只需其中一种模型正确即可获得一致估计。文章详细阐述了DID原理、控制变量选择逻辑,并演示了drdid命令的实际应用。该命令支持面板和重复截面数据,提供多种估计量选项,能有效处理潜在偏误问题。通过lalonde.dta数据示例,展示了DRDID在实证研究中的操作流程与结果解读。
2025-05-28 17:32:27
1021
原创 多时期DID的双重稳健估计量:stata命令CSDID
多时期双重差分法(DID)的改进估计方法CSDID v1.6的新特性,包括效率提升、新增WB置信区间和seed选项以确保结果可重复性,以及新推出的csdid_plot绘图功能。文章深入探讨了传统双向固定效应(TWFE)模型在处理异质性效应时的问题,特别是早期处理组作为控制组时可能导致的负权重问题。通过引入DRDID作为核心估计方法,CSDID有效避免了不良比较,采用双重稳健估计量来准确计算ATT(g,t)。新版本通过矩阵运算优化了标准误差计算,显著提升了运行效率。最后,文章详细说明了相关程序的安装
2025-05-27 23:30:28
970
原创 Stata19+H2O集成决策树开挂!GBM与RF调参预测分类回归!SHAP解释性分析亮眼!
H2O机器学习工具包为Stata用户提供了集成决策树(GBM和随机森林)的强大功能,突破传统统计模型的局限。通过直观命令即可实现数据准备、模型训练(支持超参数调优与交叉验证)、性能评估(如ROC曲线、SHAP值解释)及预测分析。以电信客户流失数据集为例,演示了从数据拆分到模型比较的全流程,展现了机器学习在复杂非线性关系中的优势,同时保持结果可解释性。该集成方案让用户在熟悉的Stata环境中即可完成高性能预测建模,无需切换平台。
2025-05-25 13:41:49
958
原创 Stata19中的高维固定效应 High-dimensional fixed effects (HDFE)
高维固定效应(HDFE)模型通过absorb()选项显著提升了估计效率,允许在各类线性模型中(包括普通回归、固定效应模型和工具变量模型)同时处理多个高维分类变量。相比传统方法(如直接引入分类变量指示变量),新方法能大幅减少计算时间——在百万级观测值的案例中,耗时从数分钟降至秒级。例如,在包含3个高维分类变量的模型中,areg配合absorb()选项比传统方法快300倍。该功能还扩展至xtreg, fe和ivregress 2sls命令,支持更复杂的模型设定,如聚类标准误和面板统计量计算,同时提供nosigm
2025-05-25 13:32:52
646
原创 广义随机森林异质性估计stata代码cate
STATA19的cate命令为因果效应分析提供了新工具,可估计个体化和群体化的治疗效果。该命令能分析治疗效果的异质性,比较不同干预策略,并识别最优治疗分配方案。示例展示了如何使用cate研究401(k)资格对金融资产的影响:通过交叉拟合和随机森林模型计算个体化平均治疗效果(IATE),发现资产效应存在显著异质性(p=0.0427)。直方图显示治疗效果呈右偏分布,表明平均效应可能低估部分群体的收益。该工具适用于劳动经济学、市场营销和医学研究等领域,可揭示协变量(如教育年限)对治疗效果的具体影响模式。
2025-05-24 22:20:58
820
原创 什么是因果推断?一文告诉你!
因果推断是识别变量间因果关系的科学方法,广泛应用于社会科学、医学和商业领域。黄金标准是随机对照试验(RCT),通过随机化消除偏差,但实施成本高。替代方法包括: 双重差分法(DiD):比较处理组与对照组在干预前后的差异,需满足平行趋势假设; 合成控制法(SC):为单一处理单元构建合成对照组,适用于宏观政策评估; A/B测试:数字版RCT,快速验证产品/营销效果,需控制变量确保结果可靠性。 因果分析需严谨设计,避免混淆相关性与因果性。理解这些方法有助于制定有效决策,尤其在实验受限的场景中。
2025-05-24 22:09:19
962
原创 双重机器学习 中介效应 R语言教程
基于Farbmacher等(2022)、张涛和李均超(2023)的研究方法,本文将介绍如何使用R语言进行双重机器学习的中介效应分析,本文示例数据采用的是张涛和李均超(2023)的附件数据。在双重机器学习中,中介效应的估计方法可以利用R语言的包中“
2024-08-19 14:06:41
2683
3
原创 双重机器学习 stata代码 手把手教学
接着,使用同样的控制变量集预测处理变量(X),得到其残差,去除控制变量的影响。通常情况下,我们直接构建线性回归模型,即用 X 和 T 对 Y 回归,估计 T 的系数,这种方法假定了我们已知 X 的分布。事实上,高维的 X 可能内部存在共线性,与 Y 是非线性关系,若单纯的用线性模型进行估计,会存在偏误。最近,学界内有关双重机器学习的文献逐渐崭露头角,越来越多的研究者开始关注并应用这一方法,其应用范围逐步适用于区域经济学、发展经济学、环境经济学和企业金融等领域的政策评估。
2024-07-26 00:18:44
2418
6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人