Stata好写,太好写了!Stata那种代码,说实话分分钟写出来,不用一小时,三秒钟!
为什么我不写了?
(轻抚式打脸)爷们儿要脸,咱是一科研狗儿,首先得对得起自己~
嘿嘿嘿,逗个乐子哈,要是想在三秒内就写出一行stata代码,那光有扎实的基础可不够,还得多多操练才行哟。这不,阿水给大伙扒拉到了stata官网精心整理的一套 《stata代码速查表》,里面啥常用的数据分析、数据转换、数据可视化的stata代码,统统都有呢。大伙可以自个儿去下载打印,平常搞科研要查代码就方便啦,或者贴在桌上,还能假装一下资深科研大佬呢。
话不多说,上资料~(文末有PDF获取方式)
以下是阿水给大家整理表中内容的文字部分,方便大家查阅~
第一章节:数据分析
一、数据描述与探索(Summarize Data)
-
单变量统计
- 描述性统计:
summarize mpg
(均值、标准差等),summarize mpg, detail
(含偏度、峰度)。 - 分布可视化:
histogram mpg
(直方图),boxplot mpg
(箱线图),stem mpg
(茎叶图)。 - 分位数与置信区间:
pctile mpg_quantile = mpg, nq(4)
(四分位数),ci mpg
(均值置信区间)。
- 描述性统计:
-
多变量分析
- 相关性:
correlate price mpg
(相关矩阵),pwcorr price mpg, sig
(带显著性检验的两两相关)。 - 比例与比率:
proportion rep78
(分组比例估计),ratio price mpg
(比率估计)。
- 相关性:
二、统计检验(Statistical Tests)
-
参数检验
- t检验:
ttest mpg, by(foreign)
(组间均值差异),ttest mpg == 20
(单样本均值检验)。 - 卡方检验:
tabulate rep78 foreign, chi2
(列联表独立性检验)。
- t检验:
-
非参数检验
- 秩和检验:
ranksum mpg, by(foreign)
(Mann-Whitney U检验),kwallis mpg rep78
(Kruskal-Wallis检验)。 - 分布拟合:
ksmirnov mpg = normal(20, 5)
(Kolmogorov-Smirnov正态性检验)。
- 秩和检验:
-
方差分析与协方差
oneway mpg rep78
(单因素ANOVA),ancova mpg weight, by(foreign)
(协方差分析)。
三、分类与因子变量建模(Categorical & Factor Variables)
-
变量声明
- 分类变量:
encode foreign, gen(foreign_cat)
(字符串转分类因子),label define foreign_lab 0 "Domestic" 1 "Foreign", replace
(添加因子标签)。 - 交互项:
regress price i.foreign##c.mpg
(分类与连续变量交互)。
- 分类变量:
-
模型估计
- 虚拟变量回归:
regress price i.foreign
(自动生成虚拟变量),regress price foreign##rep78
(多分类交互)。
- 虚拟变量回归:
四、数据类型声明与高级分析
-
时间序列(Time Series)
- 声明:
tsset year
(设定时间索引),xtset id year
(面板时间序列)。 - 操作:
generate lags = l2.sunsots
(二阶滞后),tssmooth ma sunsots_ma = sunsots, window(3)
(移动平均)。
- 声明:
-
面板数据(Panel/Longitudinal)
- 声明:
xtset id year
(平衡/非平衡面板),xtline mpg, i(id)
(个体趋势图)。 - 模型:
xtreg price mpg, fe
(固定效应),xtreg price mpg, re
(随机效应,含xttest0
检验)。
- 声明:
-
生存分析(Survival Analysis)
- 声明:
stset time, failure(died)
(设定生存数据),stsum
(生存时间汇总)。 - 模型:
stcox age gender
(Cox比例风险模型),streg age gender, dist(exponential)
(参数生存模型)。
- 声明:
-
调查数据(Survey Data)
- 声明:
svyset psu [pweight=finlwt], strata(strata)
(设定调查设计),svydescribe
(调查设计描述)。 - 分析:
svy: mean age
(调查加权均值),svy: regress price mpg
(调查加权回归)。
- 声明:
五、模型估计(Fit Models)
-
线性回归
- 基础:
regress price mpg, vce(robust)
(稳健标准误),regress price mpg weight, cluster(rep78)
(聚类标准误)。 - 非线性:
regress price ln(mpg)
(对数变换),glm price mpg, family(gamma)
(广义线性模型)。
- 基础:
-
分类模型
- 逻辑回归:
logit foreign price mpg
(二分类),ologit rep78 price mpg
(有序多分类)。 - 泊松回归:
poisson accidents age miles, vce(robust)
(计数数据模型)。
- 逻辑回归:
-
工具变量与因果推断
ivregress 2sls price (mpg=weight) foreign
(两阶段最小二乘法),estat firststage
(第一阶段检验)。
六、模型诊断(Diagnostics)
-
异方差与自相关
hetest
(异方差检验),dwstat
(Durbin-Watson自相关检验),bgodfrey
(Breusch-Godfrey检验)。
-
遗漏变量与设定误差
ovtest
(Ramsey RESET检验),linktest
(模型设定检验),predict res, residual
(残差分析)。
-
多重共线性
vif
(方差膨胀因子),corr price mpg weight, matrix
(相关矩阵可视化)。
七、后估计与结果呈现(Postestimation)
-
预测与边际效应
predict pricehat
(拟合值),margins, dydx(mpg)
(平均边际效应),margins foreign, at(mpg=(20(5)40))
(条件边际效应)。
-
结果可视化
coefplot, drop(_cons)
(回归系数图),avplot mpg
(添加变量图),rvfplot, yline(0)
(残差-拟合值图)。
-
模型比较
lrtest model1 model2
(似然比检验),hausman fe_model re_model
(固定vs随机效应检验)。
第二章节:Programming
一、编程核心构件(Building Blocks)
-
标量(Scalars)
- 定义与操作:存储数值(
scalar x=3
)或字符串(scalar s="text"
),支持算术(x+5
)与逻辑运算,通过display
输出。 - 应用场景:临时存储统计量(如
scalar mean_p = r(mean)
),简化代码逻辑。
- 定义与操作:存储数值(
-
矩阵(Matrices)
- 定义与运算:创建矩阵(
matrix A=(1,2\3,4)
)、执行线性代数操作(matrix B=A*inv(A)
),通过matlist
查看。 - 数据交互:
matrix score
将矩阵与数据集关联(如主成分分析结果映射),matplot
可视化矩阵数据。
- 定义与运算:创建矩阵(
-
宏(Macros)
- 全局宏(Global):跨程序访问(
global vars "mpg price"
,summarize $vars
),适合固定变量列表。 - 局部宏(Local):程序内动态引用(
local v "weight"
,regress price
v``),增强代码灵活性。 - 临时宏(Tempnames/Tempfiles):临时存储名称(
tempname t1
)或文件(tempfile tf
),避免命名冲突。
- 全局宏(Global):跨程序访问(
二、结果管理与访问(r- & e-class)
-
r-class(计算结果)
- 示例:
summarize mpg, detail
后,return list
获取均值(r(mean)
)、标准差(r(sd)
)等,用于后续计算(generate sd_mpg = r(sd)
)。
- 示例:
-
e-class(估计结果)
- 示例:
regress price mpg
后,ereturn list
获取系数(e(b)
)、标准误(e(V)
),通过estimates store
保存模型(estimates store reg1
),支持estimates table
对比。
- 示例:
三、循环与自动化(Loops)
- foreach循环
- 变量遍历:
foreach var of varlist mpg weight price {
replace `var' = . if `var' < 0 // 批量处理负值缺失
}
- 字符串列表:
local strs "group1 group2"
foreach s of local strs {
tabulate `s' // 批量生成频数表
}
- forvalues循环
- 数值序列:
forvalues i=1/5 {
egen mean_`i' = mean(mpg) if group==`i' // 分组均值计算
}
- while循环
- 条件控制:
local i=1
while `i' <= 10 {
display "Iteration: `i'"
local i = `i' + 1
}
四、程序与调试(Programming & Debugging)
- 自定义程序
- 封装逻辑:
program define myReg
args dep varlist
regress `dep' `varlist', vce(robust)
eststo // 存储结果
end
myReg price mpg weight // 调用程序
- 错误处理:
capture noisily myReg
(捕获错误,避免程序中断)。
- 调试工具
set trace on
(逐行跟踪代码执行),display
嵌入(检查中间变量值),log using
记录调试日志。
五、学术场景应用
-
批量分析:
- 利用
foreach
循环生成多组回归(如按年份、组别),结合estimates
存储与coefplot
可视化,提升论文写作效率。
- 利用
-
数据预处理:
- 自动化清洗(如
replace
、recode
批量处理),通过宏动态引用变量名,减少重复代码。
- 自动化清洗(如
-
可复现性保障:
- 编写
.do
文件封装全流程,使用tempfile
存储中间数据,确保分析可重复(set seed
固定随机数)。
- 编写
第三章节:数据分析
一、基础语法与系统操作
-
命令结构
所有Stata命令遵循统一格式:
[by varlist1:] command [varlist2] [if exp] [in range] [,options]
- 分组执行:
by varlist1
(如bysort rep78
按rep78
分组) - 条件筛选:
if exp
(如if foreign == 0
筛选国外数据) - 范围限定:
in range
(如in 1/50
选取前50行) - 功能扩展:
options
(如summarize ..., detail
输出详细统计)
- 分组执行:
-
快捷键与系统控制
- 数据查看:
F2
:describe
查看数据结构Ctrl+8
:打开Data Editor
- 代码执行:
Ctrl+D
:执行Do文件中选中代码Tab
:自动补全变量名(如输入pr
后按Tab
补全price
)
- 内存与日志:
clear
:清空内存数据log using "logfile.txt"
:记录分析日志
- 数据查看:
-
数据类型与转换
- 类型体系:
- 数值型:
byte
(布尔)、int
、long
、float
、double
- 字符型:
string
(存储文本,如品牌名) - 缺失值:
missing
(用.
表示,如price == .
)
- 数值型:
- 转换命令:
- 字符↔数值:
destring foreignString, gen(foreignNumeric)
(字符转数值)
tostring foreign, gen(foreignString)
(数值转字符) - 强制转换:
recast double mpg
(将mpg
转为双精度浮点型)
- 字符↔数值:
- 类型体系:
二、数据导入与探索
-
数据导入
- 本地文件:
- CSV:
import delimited "data.csv", varnames(2)
(第二行作为变量名) - Excel:
import excel "data.xlsx", sheet("Sheet1") firstrow
(首行作为变量名) - Stata数据:
use "data.dta", clear
(清空内存后加载)
- CSV:
- 网络数据:
webuse auto, clear
(加载Stata示例数据集auto.dta
)
- 本地文件:
-
数据探索
- 结构查看:
describe make price
:显示make
和price
的变量类型、标签等codebook make_price
:输出变量的唯一值、缺失值等详细属性
- 分布分析:
summarize price mpg
:计算均值、标准差等基本统计量histogram mpg, width(5) freq
:绘制组距为5的频率直方图tabulate rep78, mi
:生成rep78
的频数表(含缺失值)
- 观测筛选:
browse
:在Data Editor中浏览数据list make if price > 10000 & missing(price) == 0
:列表查看价格>10000且无缺失的观测
- 结构查看:
三、数据清洗与转换
-
缺失值处理
- 填充缺失值:
mvencode _all, mv(9999)
(用9999填充所有变量的缺失值) - 还原缺失值:
mvdecode _all, mv(9999)
(将9999转为缺失值)
- 填充缺失值:
-
变量操作
- 生成新变量:
gen mpgSq = mpg^2
:计算mpg
的平方egen meanPrice = mean(price), by(foreign)
:按foreign
分组计算价格均值
- 重命名/删除:
rename rep78 repairRecord
:将变量rep78
重命名为repairRecord
drop price
:删除变量price
- 生成新变量:
-
数据重塑
- 宽长转换:
- 宽转长:
reshape long coffee@ maize@, i(country) j(year)
(将年份从列名转为变量year
) - 长转宽:
reshape wide, i(country) j(year)
(将year
变量转为列名)
- 宽转长:
- 合并/追加:
- 横向合并:
merge 1:1 id using "ind_age.dta"
(按id
一对一合并数据) - 纵向追加:
append using "coffeeMaize2.dta", gen(filenum)
(合并数据并标记来源文件)
- 横向合并:
- 宽长转换:
四、描述性统计与可视化
-
统计量计算
- 单变量统计:
summarize price, detail
(输出均值、中位数、峰度等详细统计)
pctile mpgQuartile = mpg, nq(4)
(生成mpg
的四分位数分组) - 分组统计:
bysort foreign: summarize price
(按foreign
分组计算价格统计)
tabulate rep78 foreign, mi
(生成rep78
与foreign
的交叉频数表)
- 单变量统计:
-
数据可视化
- 基础图形:
- 直方图:
histogram mpg, kdensity
(叠加核密度曲线) - 散点图:
twoway scatter mpg weight, jitter(7)
(添加抖动避免点重叠) - 箱线图:
graph box mpg, over(foreign)
(按foreign
分组绘制箱线图)
- 直方图:
- 高级图形:
- 小提琴图:
vioplot price, over(foreign)
(结合密度与箱线特征) - 平行坐标图:
twoway pcspike wage68 ttl_exp68
(对比多变量趋势)
- 小提琴图:
- 定制选项:
- 主题:
scheme(s1mono)
(单色主题,适合学术图表) - 颜色:
mcolor("145 168 208")
(指定RGB颜色) - 注释:
text(20 100 "Sample Note")
(在图形中添加文本注释)
- 主题:
- 基础图形:
五、学术场景应用
-
研究流程整合
- 数据清洗:
- 批量处理异常值:
replace price = 5000 if price < 5000
(将价格<5000的观测设为5000) - 验证数据逻辑:
assert price != .
(确保price
无缺失值,否则报错)
- 批量处理异常值:
- 分析复现:
- 固定随机数:
set seed 1234
(确保随机操作可复现,如sample
抽样) - 记录日志:
log using "analysis.log", replace
(保存命令与输出,便于论文复现)
- 固定随机数:
- 数据清洗:
-
结果输出
- 数据保存:
save "myData.dta", replace
(覆盖保存为Stata格式)
export delimited "data.csv", replace
(导出为CSV,方便跨软件使用) - 图表导出:
graph export "plot.pdf", as(pdf) replace
(导出为PDF,满足期刊投稿要求)
estout
(将回归结果输出为LaTeX表格,提升论文排版效率)
- 数据保存:
第四章节:数据转换
一、数据子集选择(Subsetting Data)
-
变量筛选
- 删除:
drop make
(移除make
变量) - 保留:
keep make price
(仅存make
和price
) - 重命名:
rename rep78 repairRecord
(变量名映射)
- 删除:
-
观测筛选
- 行范围:
keep in 1/30
(前30行),drop in 1/4
(前4行删除) - 条件筛选:
keep if price >= 5000 & price <= 10000
(价格区间)
keep if inlist(make, "Honda Accord", "Subaru")
(特定值匹配) - 随机抽样:
sample 25
(25%抽样,set seed 1234
确保可复现)
- 行范围:
二、数据重塑(Reshape Data)
-
宽长转换
- 宽转长(Melt):
reshape long coffee@ maize@, i(country) j(year)
- 生成
country-year
唯一标识,将宽数据(列含年份)转为长数据(行含年份)。
- 生成
- 长转宽(Cast):
reshape wide coffee@ maize@, i(country) j(year)
- 恢复宽数据格式,适用于面板数据的年度变量展示。
- 宽转长(Melt):
-
数据合并
- 纵向追加(Append):
append using "data2.dta", gen(source)
(合并数据,标记来源source
) - 横向合并(Merge):
- 1:1匹配:
merge 1:1 id using "ind.dta"
(按id
唯一匹配,_merge
标识匹配状态) - 多对一匹配:
merge m:1 region using "region.dta"
(如个体-地区数据合并)
- 1:1匹配:
- 纵向追加(Append):
三、数据清洗与转换
-
值操作
- 替换:
replace price = 5000 if price < 5000
(低价修正) - 重编码:
recode price (0/5000=5000) (5001/10000=10000), gen(priceCat)
(创建价格类别)
recode foreign (0="Domestic") (1="Foreign"), gen(foreignLabel)
(数值转标签)
- 替换:
-
缺失值处理
- 填充:
mvencode _all, mv(9999)
(9999填充缺失) - 还原:
mvdecode _all, mv(9999)
(9999转缺失)
- 填充:
-
字符串处理
- 属性与匹配:
display length("Stata")
(长度),display strpos("Stata", "a")
(位置)
list make if regexm(make, "Honda")
(正则匹配含“Honda”的品牌) - 清洗与转换:
display trim(" Stata ")
(去空格),display real("100")
(字符转数值)
- 属性与匹配:
四、标签与元数据管理
-
变量标签
label variable price "Car Price (USD)"
(添加描述标签)label define foreign_lab 0 "Domestic" 1 "Foreign", replace
(定义因子标签集)label values foreign foreign_lab
(应用标签到foreign
变量)
-
数据注释
note: Data sourced from 1978 Auto Dataset
(添加数据来源注释)listlabels
(查看所有标签定义)
五、数据保存与导出
-
数据存储
save "myData.dta", replace
(覆盖保存Stata数据)saveold "myData.dta", version(12)
(兼容Stata 12版本)
-
格式导出
- CSV/Excel:
export delimited "data.csv", replace
(导出CSV)
export excel "data.xlsx", sheet("Sheet1") firstrow
(Excel导出,首行变量名) - 图形与表格:
graph export "plot.png", as(png)
(导出图形)
estout using "reg_table.tex", style(tex)
(LaTeX表格导出)
- CSV/Excel:
六、学术应用场景
-
面板数据预处理
- 利用
reshape
转换格式,结合xtset id year
声明面板数据,为xtreg
(固定/随机效应模型)做准备。
- 利用
-
分类变量标准化
- 通过
recode
和label
将数值分类(如foreign
)转为可读标签,提升论文图表的解释性。
- 通过
-
复现性保障
- 保存中间数据(
save
)、记录操作日志(log using
)、固定随机种子(set seed
),确保分析可重复,符合学术规范。
- 保存中间数据(
第五章节:数据可视化
一、基础绘图框架
-
核心语法
所有图形命令遵循:
graph <类型> 变量 [选项]
, 如histogram mpg, width(5)
(直方图,组距5)。
支持:- 分组:
by(foreign)
(按foreign
分组绘图) - 标注:
title("标题")
、text(坐标 "注释")
- 导出:
graph export "路径", as(格式)
(如PDF、PNG)
- 分组:
-
图形类型分类
- 单变量:直方图(
histogram
)、核密度图(kdensity
)、箱线图(graph box
)。 - 双变量:散点图(
twoway scatter
)、折线图(twoway line
)、面积图(twoway area
)。 - 多变量:矩阵散点图(
graph matrix
)、平行坐标图(twoway pcspike
)、等高线图(twoway contour
)。
- 单变量:直方图(
二、单变量可视化
-
连续变量(Continuous)
- 直方图:
histogram mpg, width(5) freq kdensity
(频率显示,叠加核密度)
histogram mpg, by(foreign)
(按组别分开展示) - 核密度图:
kdensity mpg, bwidth(3) normal
(带宽3,对比正态分布) - 箱线图:
graph box mpg, over(rep78)
(按rep78
分组,展示分布差异)
- 直方图:
-
离散变量(Discrete)
- 条形图:
graph bar (count) make, over(foreign) gapp(0.5)
(计数条形,调整间距)
graph bar (mean) price, over(rep78)
(均值条形,分组对比) - 饼图:
graph pie price, over(foreign)
(比例展示,适合分类占比)
- 条形图:
三、双变量与多变量绘图
-
双变量关系
- 散点图:
twoway scatter mpg weight, jitter(7) mlabel(make)
(抖动去重叠,标记观测值)
twoway scatter mpg weight, smooth(lowess)
(添加局部加权拟合线) - 折线图:
twoway connected mpg price, sort(price)
(按价格排序,展示趋势) - 面积图:
twoway area mpg price, sort(price) color(navy)
(填充面积,强调累积)
- 散点图:
-
多变量展示
- 矩阵散点图:
graph matrix mpg price weight, half
(上三角矩阵,减少重复) - 平行坐标图:
twoway pcspike wage68 ttl_exp68 wage88 ttl_exp88
(对比多变量跨时间趋势) - 等高线图:
twoway contour mpg price weight, level(20)
(20层等高线,三维分布可视化)
- 矩阵散点图:
四、分类与分组绘图
-
分组绘图
- 分面(Facet):
twoway scatter mpg price, by(foreign, cols(2))
(按组别分两列展示,优化布局) - 叠加(Superimpose):
twoway (scatter mpg weight if foreign==0) (scatter mpg weight if foreign==1), legend(label(1 "Domestic") label(2 "Foreign"))
(叠加两类散点,区分组别)
- 分面(Facet):
-
分类-连续变量结合
- 小提琴图:
vioplot price, over(foreign)
(结合密度与箱线,展示组内分布) - 点图:
graph dot (mean) price, over(foreign)
(均值点图,对比组间差异)
- 小提琴图:
五、学术场景应用
-
描述性统计可视化
- 用
histogram
、boxplot
展示数据分布,支持论文“数据特征”部分。 - 用
graph bar
、graph pie
呈现分类变量比例,增强结果可读性。
- 用
-
模型结果可视化
- 残差图:
rvfplot, yline(0)
(诊断回归残差分布,检查异方差) - 系数图:
coefplot, drop(_cons)
(可视化回归系数,对比变量影响,提升论文图表质量)
- 残差图:
-
多图组合
- 组合图(Combine):
graph combine plot1 plot2 plot3, rows(2)
(将多张图组合,节省篇幅) - 分面排版:
by(foreign)
自动分组,生成多图矩阵,适配面板数据展示。
- 组合图(Combine):
第六章节:图表外观优化
一、图表结构与元素
-
核心组件
- 标题与标签:通过
title
、subtitle
、xlabel
、ylabel
定义,支持字体、大小、颜色调整(如title("GDP Growth", color(blue))
)。 - 标记与线条:
scatter
(点)、line
(线)、area
(面)等,可设置msymbol
(形状,如circle
)、mcolor
(颜色,如red
)、lpattern
(线型,如dash
)。 - 网格与刻度:
grid
显示网格,ticksize
调整刻度线大小,xline
/yline
添加参考线(如xline(0, lwidth(thick))
)。
- 标题与标签:通过
-
布局控制
- 分面绘图:
by(foreign, cols(2))
按变量分组生成多图矩阵,优化空间利用(如对比国内/国外数据分布)。 - 边距与区域:
graphregion(color(white))
设置背景色,plotregion(margin(20 20 20 20))
调整绘图区边距。
- 分面绘图:
二、外观定制:颜色、符号与线条
-
颜色体系
- 预设与自定义:支持
Stata
颜色(如mcolor(red)
)、RGB(mcolor("145 168 208")
)、HSV(mcolor(hsv(0.5, 0.5, 0.5))
),及透明度(如mcolor("red%30")
)。 - 颜色一致性:使用
colorbrewer
色系(help colorbrewer
),确保学术图表颜色规范(如mcolor(colorbrewer(3, "Set1"))
)。
- 预设与自定义:支持
-
符号与标记
- 形状与大小:20+预设符号(
msymbol(diamond)
),大小支持huge
/medium
/small
或数值(msize(0.8)
),适配不同数据密度(如jitter(7)
避免点重叠)。
- 形状与大小:20+预设符号(
-
线条与边框
- 线型与粗细:
lpattern(solid)
(实线)、lwidth(thick)
(粗线),graphregion(linestyle(none))
移除边框,增强简洁性。
- 线型与粗细:
三、主题与样式(Schemes)
- 预设主题
- 学术常用:
scheme(s1mono)
(单色,适合期刊黑白印刷)、scheme(s2color)
(彩色,默认主题)。 - 自定义主题:
- 学术常用:
scheme customScheme, replace
set scheme customScheme
保存后全局生效,确保论文图表风格统一。
- 主题管理
- 扩展主题:安装第三方主题(如Williams’ Schemes),通过
net install
获取,丰富视觉选项(如scheme(williams)
)。 - 图形编辑器:GUI界面实时调整(
graph editor
),保存为.grec
文件(graph export "theme.grec"
),便于复用。
- 扩展主题:安装第三方主题(如Williams’ Schemes),通过
四、文本与标注
-
文本元素
- 注释与标签:
text(50 100 "P<0.01", color(red))
添加显著性注释,mlabel(make)
标记观测值(如品牌名),mlabcolor(blue)
调整标签颜色。 - 格式调整:
fontface("Times New Roman")
、fontsize(10)
符合期刊排版,angle(45)
旋转轴标签(如xlabel(, angle(45))
)。
- 注释与标签:
-
交互与导出
- 动态调整:
jitterseed(1234)
固定抖动随机种子,确保复现;graph combine
组合多图(如graph combine plot1 plot2, rows(2)
)。 - 高分辨率导出:
graph export "plot.pdf", as(pdf) width(1200) height(800)
,满足期刊高分辨率要求。
- 动态调整:
五、学术场景应用
-
期刊合规性
- 采用
scheme(s1mono)
,移除网格(nogrid
),使用单色填充(color(gray%20)
),确保黑白印刷清晰。 - 统一颜色编码(如
colorbrewer
),避免视觉混乱,提升图表专业性。
- 采用
-
复现性与模板化
- 保存自定义主题(
scheme save
),在.do
文件中调用,确保不同分析阶段图表风格一致(如set scheme customScheme
)。 - 利用
graph combine
生成多图组合,添加共同标题(title("Comparative Analysis", span)
),优化论文排版。
- 保存自定义主题(
关注公主号,后台回复“速查表”关键词,即可获取《stata代码速查表》PDF文档,欢迎小伙伴自行领取哦~