双重机器学习 stata代码 手把手教学

一、双重机器学习简介

最近,学界内有关双重机器学习的文献逐渐崭露头角,越来越多的研究者开始关注并应用这一方法,其应用范围逐步适用于区域经济学、发展经济学、环境经济学和企业金融等领域的政策评估。

什么是双重机器学习呢?

双重机器学习(Double/debiased Machine Learning, DDML)是一种专门用于因果推理的统计方法,它结合了传统回归分析和现代机器学习技术,以更准确地估计因果效应。其主要目的是在存在大量控制变量或高维数据的情况下,克服传统方法的局限性,提供更加稳健和无偏的因果效应估计。

双重机器学习的核心思想是什么?

 双重机器学习的核心思想是将因果推理问题分解为两个独立的预测步骤,利用机器学习算法来提高因果效应估计的准确性和稳健性。首先,使用控制变量集预测结果变量(Y),得到预测残差,去除由控制变量解释的部分。接着,使用同样的控制变量集预测处理变量(X),得到其残差,去除控制变量的影响。最后,通过回归分析这两个残差来估计处理变量对结果变量的因果效应。这种方法在处理高维数据和复杂模型时,能够更好地拟合数据,减少由模型错误指定引入的偏差。

二、双重机器学习原理和模型

(1)双重机器学习估计原理

Y是被解释变量;T 是处置变量,即代表样本是否受到实验干预,通常是 0 或 1 的虚拟变量;X 是协变量,代表未被实验干预预测的个体特征,通常是高维向量。通常情况下,我们直接构建线性回归模型,即用 X 和 T 对 Y 回归,估计 T 的系数,这种方法假定了我们已知 X 的分布。

事实上,高维的 X 可能内部存在共线性,与 Y 是非线性关系,若单纯的用线性模型进行估计,会存在偏误。因此,我们应用机器学习模型估计 X 的分布,其中𝑓(⋅)和𝑔(⋅)为机器学习模型。

(2)双重机器学习估计步骤

三、双重机器学习stata代码

本文以双重机器学习方法的经典文献《网络基础设施、包容性绿色增长与地区差距——基于双重机器学习的因果推断》的附件代码为例,利用stata和python实现双重机器学习估计过程。

(1)python环境配置与sciki

### 双重机器学习的概念、应用及实现方法 #### 什么是双重机器学习双重机器学习通常指的是双层规划(Bilevel Programming)在机器学习中的应用。它是一种涉及两层优化问题的框架,其中一层优化问题(称为下层或内层问题)被嵌套在另一层优化问题(上层或外层问题)之中[^1]。这种结构允许解决复杂的决策问题,在许多领域具有广泛的应用。 #### 双层机器学习的核心原理 双层机器学习的关键在于内外层之间的交互关系。外层目标函数依赖于内层优化的结果,而内层优化则受到外层变量的影响。例如,在超参数优化中,内层可能是一个模型训练过程,而外层则是针对这些超参数的选择进行优化[^3]。这种方法能够有效处理组合优化问题和其他复杂场景下的建模需求。 #### 应用实例分析 1. **技术术语识别 (TTR)** 基于内容语义的技术术语识别可以采用深度学习方法来提升性能。这类方法将技术术语视为一种特殊类型的命名实体,并借鉴自然语言处理中的命名实体识别(NER)技术[^2]。通过构建合适的特征提取器和分类器,可以在大规模文本数据集中高效发现潜在的技术术语。 2. **图上的组合优化** 针对图结构的数据集,某些研究提出了专门设计的双层框架用于求解组合优化问题。该类方法结合了强化学习与监督学习的优点,能够在动态环境中自适应调整策略以找到全局最优解。 3. **神经网络架构搜索 (NAS)** NAS 是另一个典型应用场景,其中内层负责评估候选架构的表现,而外层则探索不同的架构空间寻找最佳配置。此过程中常运用进化算法或者贝叶斯优化等高级技巧加速收敛速度并提高精度。 #### 实现方法概述 以下是实现双层机器学习的一种通用路径: - 构造清晰定义的目标函数分别对应内外两个层次; - 使用梯度下降或其他数值计算手段交替迭代更新各自参数直至满足预设终止准则为止[^5]; - 考虑到实际操作可能存在噪声干扰等因素影响最终效果,故需引入正则项加以约束从而增强鲁棒性。 下面给出一段伪代码展示如何编程模拟简单的双层优化逻辑: ```python def bilevel_optimization(outer_params, inner_params, data): while not converged: # 更新内层参数 updated_inner = optimize_inner(inner_params, outer_params, data) # 利用新的内层状态重新估计外层损失 loss_outer = compute_loss(updated_inner, outer_params, data) # 根据链式法则传播梯度至外层 grads_outer = gradient(loss_outer, outer_params) # 执行一步SGD更新外层权重 apply_gradients(grads_outer, outer_params) return outer_params, inner_params ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值