【Matlab】遗传算法 程序结果

(1)针对前面的遗传算法部分,给出程序汇总如下:

%-------------函数说明----------------

%

%             主函数      

%---------------------------------------

function main()

clear

clc

popsize = 100;     %种群大小

chromlength = 10;  %二进制编码长度

pc = 0.6;          %交叉概率

pm = 0.001;        %变异概率

pop = initpop(popsize,chromlength);   %初始种群

 

  for i=1:100

     [objvalue] = cal_objvalue(pop);     %计算适应度值(函数值)

      fitvalue = objvalue;

     [newpop] = selection(pop,fitvalue);  %选择操作

     [newpop] = crossover(newpop,pc);     %交叉操作

     [newpop] = mutation(newpop,pm);      %变异操作

      pop = newpop;                %更新种群

      [bestindividual,bestfit]=best(pop,fitvalue);%寻找最优解

      x2 = binary2decimal(bestindividual);

   

      x1 = binary2decimal(newpop);

      [y1] = cal_objvalue(newpop);    

      if  mod(i,10)==0

      figure;

      

      fplot('10*sin(5*x)+7*abs(x-5)+10',[0 10]);

      hold on;

      title(['迭代次数为 n=' num2str(i)]);

      plot(x1,y1,'*');

      end

  end

      fprintf('the best X is  --->>%5.2f\n',x2);

      fprintf('the best Y is  --->>%5.2f\n',bestfit);


%-------------函数说明----------------

%    初始化种群大小

%       输入变量:

%               popsize:种群大小

%               chromlength:染色体长度--》转化的二进制长度

%       输出变量:

%               pop:种群

%---------------------------------------

function pop = initpop(popsize,chromlength)

pop = round(rand(popsize,chromlength));

 

%-------------函数说明----------------

%     二进制转化十进制函数

%       输入变量:

%               二进制种群

%       输出变量:

%               十进制数值

%---------------------------------------

function pop2 = binary2decimal(pop)

[px,py]=size(pop);

for i=1:py

    pop1(:,i) = 2.^(py-i).*pop(:,i);

end

%sum(.,2)对行求和,得到列的向量

temp = sum(pop1,2);

pop2 = temp*10/1023;

 

%-------------函数说明----------------

%     计算函数目标值

%       输入变量:

%              二进制数值 

%       输出变量:

%               目标函数值

%---------------------------------------

function [objvalue]=cal_objvalue(pop)

x = binary2decimal(pop);

%转化二进制数为x变量的变化域范围的数值

% x = temp*10/1023;

% objvalue = 10*sin(5*x)+7*cos(4*x);

% objvalue = 10*sin(x)+7*x+10

objvalue = 10*sin(5*x)+7*abs(x-5)+10;

 

%-------------函数说明----------------

%      

%       输入变量:

%                pop  :  二进制种群

%                fitvalue  :  适应度值

%       输出变量:

%                newpop:选择以后的二进制种群

%---------------------------------------

function [newpop] = selection(pop,fitvalue)

%构造轮盘

[px,py]=size(pop);

totalfit = sum(fitvalue);

p_fitvalue = fitvalue/totalfit; 

p_fitvalue = cumsum(p_fitvalue);%概率求和排序

%-------

ms = sort(rand(px,1));%从小到大排列

fitin = 1;

newin = 1;

while newin<=px

     if (ms(newin))<p_fitvalue(fitin)

         newpop(newin,:)=pop(fitin,:);

         newin=newin+1;

     else fitin=fitin+1;

     end

 end

 

%-------------函数说明----------------

%      

%       输入变量:

%             pop:二进制的父代种群数

%             pc:交叉的概率

%       输出变量:

%             newpop:交叉后的种群数   

%---------------------------------------

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop = ones(size(pop));

for i=1:2:px-1

    if(rand<pc)

        cpoint = round(rand*py);

        newpop(i,:) = [pop(i,1:cpoint),pop(i+1,cpoint+1:py)];

        newpop(i+1,:) = [pop(i+1,1:cpoint),pop(i,cpoint+1:py)];

    else

        newpop(i,:)=pop(i,:);

        newpop(i+1,:)=pop(i+1,:);

    end

end

 

%-------------函数说明----------------

%      

%       输入变量:

%                 pop  :  二进制种群

%                 pm  :  变异概率

%       输出变量:

%                newpop  :  变异以后的种群

%---------------------------------------

function [newpop] = mutation(pop,pm)

[px,py] = size(pop);

newpop = ones(size(pop));

for i=1:px

    if(rand<pm)

        mpoint = round(rand*py);

        if mpoint<=0

            mpoint=1;

        end

        newpop(i,:) = pop(i,:);

        if newpop(i,mpoint)==0

            newpop(i,mpoint)=1;

        else newpop(i,mpoint)=0;

        end

    else

        newpop(i,:)=pop(i,:);

    end

end

 

%-------------函数说明----------------

%      

%       输入变量:  

%                pop  :  种群

%                fitvalue  :  种群适应度 

%

%       输出变量:

%                bestindividual  : 最佳个体(二进制个体)

%                bestfit     :   最佳适应度值

%---------------------------------------

function [bestindividual,bestfit]=best(pop,fitvalue)

[px,py]=size(pop);

bestindividual = pop(1,:);

bestfit = fitvalue(1);

for i=2:px

    if fitvalue(i)>bestfit

        bestindividual = pop(i,:);

        bestfit = fitvalue(i);

    end

end

(2)实验结果




遗传算法matlab程序(2009-04-14 18:25:19)转载标签: 遗传算法二进制编码if杂谈 遗传算法程序: 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB<UB):'); end s=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000)); disp(s); global m n NewPop children1 children2 VarNum bounds=[LB;UB]';bits=[];VarNum=size(bounds,1); precision=options(2);%由求解精度确定二进制编码长度 bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间 [Pop]=InitPopGray(popsize,bits);%初始化种群 [m,n]=size(Pop); NewPop=zeros(m,n); children1=zeros(1,n); children2=zeros(1,n); pm0=pMutation; BestPop=zeros(eranum,n);%分配初始解空间BestPop,Trace Trace=zeros(eranum,length(bits)+1); i=1; while i<=eranum for j=1:m value(j)=feval_r(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度 end [MaxValue,Index]=max(value); BestPop(i,:)=Pop(Index,:); Trace(i,1)=MaxValue; Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits); [selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择 [CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum)); %采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率 %round(unidrnd(eranum-i)/eranum) [MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异 [InversionPop]=Inversion(MutationPop,pInversion);%倒位 Pop=InversionPop;%更新 pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4); %随着种群向前进化,逐步增大变异率至1/2交叉率 p(i)=pMutation; i=i+1; end t=1:eranum; plot(t,Trace(:,1)'); title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)'); [MaxFval,I]=max(Trace(:,1)); X=Trace(I,(2:length(bits)+1)); hold on; plot(I,MaxFval,'*'); text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]); str1=sprintf('进化到 %d 代 ,自变量为 %s 时,得本次求解的最优值 %f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:))); disp(str1); %figure(2);plot(t,p);%绘制变异值增大过程 T2=clock; elapsed_time=T2-T1; if elapsed_time(6)<0 elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1; end if elapsed_time(5)<0 elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1; end %像这种程序当然不考虑运行上小时啦 str2=sprintf('程序运行耗时 %d 小时 %d 分钟 %.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6)); disp(str2); %初始化种群 %采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点 function [initpop]=InitPopGray(popsize,bits) len=sum(bits); initpop=zeros(popsize,len);%The whole zero encoding individual for i=2:popsize-1 pop=round(rand(1,len)); pop=mod(([0 pop]+[pop 0]),2); %i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2) %其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n) initpop(i,:)=pop(1:end-1); end initpop(popsize,:)=ones(1,len);%The whole one encoding individual %解码 function [fval] = b2f(bval,bounds,bits) % fval - 表征各变量的十进制数 % bval - 表征各变量的二进制编码串 % bounds - 各变量的取值范围 % bits - 各变量的二进制编码长度 scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variables numV=size(bounds,1); cs=[0 cumsum(bits)]; for i=1:numV a=bval((cs(i)+1):cs(i+1)); fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1); end %选择操作 %采用基于轮盘赌法的非线性排名选择 %各个体成员按适应值从大到小分配选择概率: %P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中 P(0)>P(1)>...>P(n), sum(P(i))=1 function [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits) global m n selectpop=zeros(m,n); fit=zeros(m,1); for i=1:m fit(i)=feval_r(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据 end selectprob=fit/sum(fit);%计算各个体相对适应度(0,1) q=max(selectprob);%选择最优的概率 x=zeros(m,2); x(:,1)=[m:-1:1]'; [y x(:,2)]=sort(selectprob); r=q/(1-(1-q)^m);%标准分布基值 newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率 newfit=cumsum(newfit);%计算各选择概率之和 rNums=sort(rand(m,1)); fitIn=1;newIn=1; while newIn<=m if rNums(newIn)<newfit(fitIn) selectpop(newIn,:)=pop(fitIn,:); newIn=newIn+1; else fitIn=fitIn+1; end end %交叉操作 function [NewPop]=CrossOver(OldPop,pCross,opts) %OldPop为父代种群,pcross为交叉概率 global m n NewPop r=rand(1,m); y1=find(r<pCross); y2=find(r>=pCross); len=length(y1); if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数 y2(length(y2)+1)=y1(len); y1(len)=[]; end if length(y1)>=2 for i=0:2:length(y1)-2 if opts==0 [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); else [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); end end end NewPop(y2,:)=OldPop(y2,:); %采用均匀交叉 function [children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2 hidecode=round(rand(1,n));%随机生成掩码 crossposition=find(hidecode==1); holdposition=find(hidecode==0); children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因 children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因 children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因 children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因 %采用多点交叉,交叉点数由变量数决定 function [Children1,Children2]=MultiPointCross(Parent1,Parent2) global n Children1 Children2 VarNum Children1=Parent1; Children2=Parent2; Points=sort(unidrnd(n,1,2*VarNum)); for i=1:VarNum Children1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i)); Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i)); end %变异操作 function [NewPop]=Mutation(OldPop,pMutation,VarNum) global m n NewPop r=rand(1,m); position=find(r<=pMutation); len=length(position); if len>=1 for i=1:len k=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点 for j=1:length(k) if OldPop(position(i),k(j))==1 OldPop(position(i),k(j))=0; else OldPop(position(i),k(j))=1; end end end end NewPop=OldPop; %倒位操作 function [NewPop]=Inversion(OldPop,pInversion) global m n NewPop NewPop=OldPop; r=rand(1,m); PopIn=find(r<=pInversion); len=length(PopIn); if len>=1 for i=1:len d=sort(unidrnd(n,1,2)); if d(1)~=1&d(2)~=n NewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1); NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n); end end end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值