NKOJ 1796 数字金字塔
时间限制 : 10000 MS 空间限制 : 65536 KB
问题描述
观察下面的数字金字塔。
写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的样例中,从7 到 3 到 8 到 7 到 5 的路径产生了最大
输入格式
第一个行包含 R(1<= R<=1000) ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
所有的被供应的整数是非负的且不大于100。
输出格式
单独的一行,包含那个可能得到的最大的和。
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
30
思路:
1、阶段:每一层数塔。
2、状态:f[x][y]表示从底层到达每个点(x,y)的最优值
3、决策:从底层到(x,y)的最优值是从底层到(x+1,y)和底层到(x+1,y+1)的这两个值中,选择最大者转化得到的。
4、方程:f[x][y]=m[x][y]+max(f[x+1][y],f[x+1][y+1])
边界条件:1<=x,y
#include<cstdio>
#include<iostream>
using namespace std;
int f[2][1003],m[1003][1003];
int main()
{
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
scanf("%d",&m[i][j]);
}
for(int i=1;i<=n;i++) f[n&1][i]=m[n][i];
for(int i=n-1;i>=1;i--)
for(int j=1;j<=n;j++)
{
f[i&1][j]=m[i][j]+max(f[(i-1)&1][j],f[(i-1)&1][j+1]);
}
printf("%d",f[1][1]);
}