NKOJ 1628 岳麓山提水
时间限制 : 10000 MS 空间限制 : 65536 KB
问题描述
最近,由于XX原因,大家不得不到岳麓山去提水。
信息组有一个容量为q升的大缸,由于大家都不愿意浪费水,所以每次都会刚好把缸盛满。但是,信息组并没有桶子(或者瓢)来舀水,作为组内的生活委员,你必须肩负重任,去买桶子。
有p种桶子,每种桶子都有无穷多个,且价钱一样。由于大家都很节约,所以你必须尽量少买桶子。如果有多种方案,你必须选择“更小”的那种方案,即:把这两个方案的集合(不同大小的桶子组成)按升序排序,比较第一个桶,选择第一个桶容积较小的一个。如果第一个桶相同,比较第二个桶,也按上面的方法选择。否则继续这样的比较,直到相比较的两个桶不一致为止。例如,集合{3,5,7,8} 比集合 {3,6,7,8} 要好。
为了把缸装满水,大家可以先从岳麓山的井里把桶装满水提回来,然后倒进缸里。为了不十分麻烦或者浪费宝贵的水资源,大家决不把缸里的水倒出来或者把桶里的水倒掉,也不会把桶里的水再倒回井中(这样会污染井水)。当然,一个桶可以使用多次。例如,用一个容积为 1 升的桶可以将任意容量的大缸装满水。而其它的组合就要麻烦些。
输入格式
第1行1个数q(q<=20000)。
第2行1个数p(p<=100)。
接下来p行,每行一个数,依次为每个桶的容积。
输出格式
共1行,每两个数间用空格分隔,第1个数k为最少的桶的数量,接下来k个数从小到大输出每个桶的容量。
样例输入
16
3
3
5
7
样例输出
2 3 5
来源 vijos
思路:
从0开始枚举每次要买的桶数,进行搜索,每次搜索时搜索所有当前允许桶数的组合,并用背包模型判断是否合理。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int q,p;
int a[104],ans[104];
bool mark[20004];
int d;
//.......................................................................
bool f[20004]={1};
bool judge()
{
for(int i=1;i<=q;i++) f[i]=false;
//f[0]=1;
for(int i=1,v;i<=d;i++)
for(v=ans[i];v<=q;v++)
{
if(f[v-ans[i]]) f[v]=true;
}
return f[q];
}
//......................................................................
bool flag;
void ids(int now,int x)
{
if(now==d+1)
{
if(judge())flag=true;
return;
}
for(int i=1+x;i<=p;i++)
{
if(flag) return;
ans[now]=a[i];
ids(now+1,i);
}
}
//......................................................................
int main()
{
scanf("%d%d",&q,&p);
for(int i=1,tot=0,b;i<=p;i++)
{
scanf("%d",&b);
if(b<=q&&!mark[b])
{
mark[b]=true;
a[++tot]=b;
}
}
sort(a+1,a+1+p);
for(d=1;d<=p;d++)
{
memset(ans,0,(p<<2)+4);
ids(1,0);
if(flag)
{
printf("%d ",d);
for(int j=1;j<=d;j++) printf("%d ",ans[j]);
return 0;
}
}
}