统计不可区分和计算不可区分

我们通过一个随机函数来举例子,在这个例子中有三个角色,挑战者,真随机源头以及一个随机数生成算法。其过程为,真随机源通过扔硬币的方式产生一个真随机数R,随机函数通过一个算法生成一个随机数R’,将R和R’同时发送给挑战者,让挑战者区分哪个是真随机源产生的随机数,哪个是随机函数产生的随机数
如果挑战者能够区分两者,则我们说挑战成功。

这里区分计算不可区分和统计不可区分的关键点在于挑战者的能力。如果挑战者的能力是无限的,无限能力的挑战者都不能挑战成功那么他就是统计不可区分;如果挑战者的能力是多项式的,多项式能力的挑战者不能挑战成功那么他就是计算不可区分的。这里边的区别在于,随机数中间有很多的统计特性,比如一个挑战者C的能力只能够统计0,1的个数,当R‘全为1的时候,挑战者能够区分R’和R。当R’为01010101…,01交替出现的时候,那么挑战者C就无法区分R和R‘。随着挑战者的能力不断增大,其能够分析的R和R’的统计特性就不断增多。当挑战者的能力到达多项式时,他分析了在此时他的能力下R和R’所有的统计特性,依然无法挑战成功,那么我们就说这是计算不可区分的。(为什么是多项式,因为一般情况下,我们认为超过多项式时间复杂度的算法计算机就没法处理了。)我们继续增加挑战者的能力,当挑战者的能力是无限时,也就是说挑战者分析了R和R’所有的统计特性,依然无法挑战成功,那么这个时候,从统计学上(或者说概率分布)来看,那么R和R’就是一回事了,因此叫统计不可区分。

统计不可区分是完美的无论计算机的能力多么强大都是无法区分,但是计算不可区分在计算机能力足够强大,能够分析更多R和R’的统计特性后是能够区分的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值