数论杂记

本原勾股数
概念:a,b,c没有公因数而且满足:a^2+b^2=c^2
首先,这种本原勾股数的个数是无限的,而且构造的条件满足:
a=s*t 
b=(s^2-t^2)/2 
c=(s^2+t^2)/2
其中s>t>=1是任意没有公因数的奇数!
由以上概念就可以导出任意一个本原勾股数组。


哥德巴赫猜想的推广
任意一个>=8的整数一定能够拆分为四个素数的和

证明:
(1)n&1==0(n为偶数),那么n就一定可以拆分为两个偶数的和
那么根据哥德巴赫猜想,偶数可以拆分为两个素数的和,于是,n一定可以拆分为四个素数的和
(2)n&1==1(n为奇数),n一定可以拆分为两个偶数+1
由于有一个素数又是偶数,2,那么奇数一定有如下拆分:2+3+素数+素数
得证。


抽屉原理
如果现在有3个苹果,放进2个抽屉,那么至少有一个抽屉里面会有两个苹果。

运用 :
抽屉原理本身只是一句废话,不过他的运用却非常强大
现在假设有一个正整数序列a1,a2,a3,a4.....an,试证明我们一定能够找到一段连续的序列和,让这个和是n的倍数,该命题的证明就用到了抽屉原理
我们可以先构造一个序列si=a1+a2+...ai
然后分别对于si取模,
①如果其中有一个sk%n==0,那么a1+a2+...+ak就一定是n的倍数(得证)
②如果任何一个sk对于n的余数都不为0 ,那么si%n的范围必然在1——(n-1),所以原序列si就产生了n个范围在1——(n-1)的余数,于是抽屉原理就来了,n个数放进n-1个盒子里面,必然至少有两个余数会重复,那么这两个sk1,sk2之差必然是n的倍数, 而sk1-sk2是一段连续的序列,那么原命题就得到了证明了


求一个数的二进制表示中“1”的个数

原理:每次消去最后一个“1”,比如本来是101000的,第一次while后n=101000&100111=100000
优点:速度比“每次右移一位然后&1”这种方法快,且正负适用
int count(int n) {
     int count = 0;
     while (n) {
          count++;
          n = n & (n - 1);
     }
     return count;
}
同理,想把二进制数n中最后一个0变为1的话,n = n | ( n + 1 ) ;


对于 n! 中含有的某个质因子x的个数ans求法:
ans=0;
while (n) {
    n/=x;
    ans+=n;
}

n! 中2因子的个数等于(n-它的二进制形式中1的个数)

判断组合数C(n,m)的奇偶性
           当n&m==m时为奇数,反之就是偶数


输出x的所有子集(状态压缩)
for(int i=x;i!=0;i=(i-1)&x)
    echo(i);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值