数学杂记

记录一些可能比较重要,但是比较琐碎的数学知识。

PS:有些内容没有证明,如果想知道正确性的话可以自己去查阅资料。

PPS:由于某些东西博主没有系统学过,有错误请指出。


数论函数的一些性质

欧拉函数 φ ( n ) \varphi(n) φ(n)

  • 定义式: φ ( n ) = ∑ i = 1 n [ gcd ⁡ ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^n[\gcd(i,n)=1] φ(n)=i=1n[gcd(i,n)=1]
  • ∑ i = 1 n i [ gcd ⁡ ( i , n ) = 1 ] = n φ ( n ) + [ n = 1 ] 2 \sum_{i=1}^ni[\gcd(i,n)=1]=\frac{n\varphi(n)+[n=1]}{2} i=1ni[gcd(i,n)=1]=2nφ(n)+[n=1]

证明:

  • 根据辗转相减法,当 gcd ⁡ ( n , i ) = 1 \gcd(n,i)=1 gcd(n,i)=1 时,必然有 gcd ⁡ ( n , n − i ) = 1 \gcd(n,n-i)=1 gcd(n,ni)=1
  • 也就是说,当答案加上 i i i 时,必然也会加上 n − i n-i ni,而 i + ( n − i ) = n i+(n-i)=n i+(ni)=n,我们就直接加 n n n,最后由于算重除个 2 2 2
  • 所以答案就是 ∑ i = 1 n n [ gcd ⁡ ( i , n ) = 1 ] 2 = n φ ( n ) 2 \frac{\sum_{i=1}^nn[\gcd(i,n)=1]}2=\frac{n\varphi(n)}2 2i=1nn[gcd(i,n)=1]=2nφ(n) [ n = 1 ] [n=1] [n=1] 是特判。
  • p p p 为质数时, φ ( p k ) = p k − p k − 1 = ( p − 1 ) p k − 1 \varphi(p^k)=p^k-p^{k-1}=(p-1)p^{k-1} φ(pk)=pkpk1=(p1)pk1

除了 p p p 的倍数之外,其他数都与 p p p 互质,得证。

  • φ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n)=n\prod_{i=1}^k(1-\frac 1 {p_i}) φ(n)=ni=1k(1pi1)(可用于 O ( n ) O(\sqrt n) O(n ) 求单点欧拉函数值)。
  • n = ∏ i = 1 k p i a i n=\prod_{i=1}^kp_i^{a_i} n=i=1kpiai,由于 φ \varphi φ 是积性函数,那么 φ ( n ) = ∏ i = 1 k φ ( p i a i ) \varphi(n)=\prod_{i=1}^k\varphi(p_i^{a_i}) φ(n)=i=1kφ(piai)
  • 又因为 φ ( p k ) = p k − p k − 1 = p k ( 1 − 1 p ) \varphi(p^k)=p^k-p^{k-1}=p^k(1-\frac 1 p) φ(pk)=pkpk1=pk(1p1),所以 φ ( n ) = ∏ i = 1 k p i a i ( 1 − 1 p i ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n)=\prod_{i=1}^kp_i^{a_i}(1-\frac 1{p_i})=n\prod_{i=1}^k(1-\frac 1 {p_i}) φ(n)=i=1kpiai(1pi1)=ni=1k(1pi1)
  • φ ( i j ) = φ ( i ) φ ( j ) gcd ⁡ ( i , j ) φ ( gcd ⁡ ( i , j ) ) \varphi(ij)=\varphi(i)\varphi(j)\frac{\gcd(i,j)}{\varphi(\gcd(i,j))} φ(ij)=φ(i)φ(j)φ(gcd(i,j))gcd(i,j)

这个根据 φ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n)=n\prod_{i=1}^k(1-\frac 1{p_i}) φ(n)=ni=1k(1pi1) 就可以推出来了。

  • ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n

莫比乌斯函数 μ ( n ) \mu(n) μ(n)

  • 定义式: ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1](常用于转化布尔表达式)。
  • μ ( n ) = { 1 , n = 1 ( − 1 ) k , n = p 1 p 2 ⋯ p k , ∀ i ≠ j , p i ≠ p j 0 , o t h e r w i s e \mu(n)=\begin{cases}1,&n=1\\(-1)^k,&n=p_1p_2\cdots p_k,\forall i \ne j,p_i\ne p_j\\0,&\mathrm{otherwise}\end{cases} μ(n)=1,(1)k,0,n=1n=p1p2pk,i=j,pi=pjotherwise

约数个数函数 d ( n ) d(n) d(n)

  • d ( n m ) = ∑ i ∣ n ∑ j ∣ m [ gcd ⁡ ( i , j ) = 1 ] d(nm)=\sum\limits_{i|n}\sum\limits_{j|m}[\gcd(i,j)=1] d(nm)=injm[gcd(i,j)=1](见 [SDOI 2015]约数个数和)。

证明:

  • n m = p 1 x 1 p 2 x 2 ⋯ p k x k nm=p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k} nm=p1x1p2x2pkxk n = p 1 y 1 p 2 y 2 ⋯ p k y k n=p_1^{y_1}p_2^{y_2}\cdots p_k^{y_k} n=p1y1p2y2pkyk,那么有 m = p 1 x 1 − y 1 p 2 x 2 − y 2 ⋯ p k x k − y k m=p_1^{x_1-y_1}p_2^{x_2-y_2}\cdots p_k^{x_k-y_k} m=p1x1y1p2x2y2pkxkyk
  • 又设 i = p 1 a 1 p 2 a 2 ⋯ p k a k i=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} i=p1a1p2a2pkak j = p 1 b 1 p 2 b 2 ⋯ p k b k j=p_1^{b_1}p_2^{b_2}\cdots p_k^{b_k} j=p1b1p2b2pkbk,由于 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1,那么对于 ∀ i ∈ [ 1 , k ] \forall i\in[1,k] i[1,k] min ⁡ ( a i , b i ) = 0 \min(a_i,b_i)=0 min(ai,bi)=0。当 a i = 0 a_i=0 ai=0 时, b i b_i bi x i − y i + 1 x_i-y_i+1 xiyi+1 种取值;当 b i = 0 b_i=0 bi=0 时, a i a_i ai y i + 1 y_i+1 yi+1 种取值;而 a i = 0 a_i=0 ai=0 b i = 0 b_i=0 bi=0 被算重了,所以一共有 x i + 1 x_i+1 xi+1 种取值。
  • 所以,满足条件的 i , j i,j i,j 对数有 ∏ i = 1 k ( x i + 1 ) \prod_{i=1}^k(x_i+1) i=1k(xi+1) 对,符合约数个数函数。

常见的 Dirichlet 卷积:

  • φ ( n ) = ∑ d ∣ n μ ( d ) n d \varphi(n)=\sum_{d|n}\mu(d)\frac {n}{d} φ(n)=dnμ(d)dn,即 φ = μ ∗ I d \varphi=\mu*Id φ=μId
  • I d ( n ) = ∑ d ∣ n φ ( d ) Id(n)=\sum_{d|n}\varphi(d) Id(n)=dnφ(d),即 I d = φ ∗ 1 Id=\varphi*1 Id=φ1(杜教筛筛 φ \varphi φ)。
  • [ n = 1 ] = ∑ d ∣ n μ ( d ) [n=1]=\sum_{d|n}\mu(d) [n=1]=dnμ(d),即 ϵ = μ ∗ 1 \epsilon=\mu*1 ϵ=μ1(杜教筛筛 μ \mu μ)。
  • d ( n ) = ∑ k ∣ n 1 d(n)=\sum_{k|n}1 d(n)=kn1,即 d = 1 ∗ 1 d=1*1 d=11
  • σ ( n ) = ∑ k ∣ n k \sigma(n)=\sum_{k|n}k σ(n)=knk,即 σ = I d ∗ 1 \sigma=Id*1 σ=Id1

有些看起来比较显然,但是在推式子的时候会有很大帮助。


降幂

a b ≡ { a b % φ ( p ) gcd ⁡ ( a , p ) = 1 a b gcd ⁡ ( a , p ) ≠ 1 , b < φ ( p ) a b % φ ( p ) + φ ( p ) gcd ⁡ ( a , p ) ≠ 1 , b ≥ φ ( p )          ( m o d    p ) a^b\equiv \begin{cases}a^{b\%\varphi(p)}&\gcd(a,p)=1\\a^b&\gcd(a,p)\ne 1,b<\varphi(p)\\ a^{b\%\varphi(p)+\varphi(p)}&\gcd(a,p)\ne1,b\geq\varphi(p) \end{cases}\;\;\;\;(\mathrm{mod}\;p) abab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)=1,b<φ(p)gcd(a,p)=1,bφ(p)(modp)


二项式反演

二项式反演的形式就是:

f n = ∑ i = 0 n ( − 1 ) i ( n i ) g i ⇔ g n = ∑ i = 0 n ( − 1 ) i ( n i ) f i f_n=\sum_{i=0}^n(-1)^i\binom n ig_i⇔g_n=\sum_{i=0}^n(-1)^i\binom n if_i fn=i=0n(1)i(in)gign=i=0n(1)i(in)fi

这个式子具有很强的对称性。

还有一个更常用的式子是这样的:

f n = ∑ i = 0 n ( n i ) g i ⇔ g n = ∑ i = 0 n ( − 1 ) n − i ( n i ) f i f_n=∑_{i=0}^n\binom n ig_i⇔g_n=∑_{i=0}^n(−1)^{n−i}\binom n if_i fn=i=0n(in)gign=i=0n(1)ni(in)fi


fibonacci 数列的一些性质

感觉做了挺多跟 fibonacci 数列有关的神题。。。

  • ∑ i = 1 n f i b i = f i b n + 2 − 1 \sum _{i=1}^n\mathrm{fib}_i=\mathrm{fib}_{n+2}-1 i=1nfibi=fibn+21
  • ∑ i = 1 n f i b i 2 = f i b n × f i b n + 1 \sum_{i=1}^n\mathrm{fib}_i^2=\mathrm{fib}_n\times \mathrm{fib}_{n+1} i=1nfibi2=fibn×fibn+1
  • gcd ⁡ ( f i b n , f i b m ) = f i b gcd ⁡ ( n , m ) \gcd(\mathrm{fib}_n,\mathrm{fib}_m)=\mathrm{fib}_{\gcd(n,m)} gcd(fibn,fibm)=fibgcd(n,m)

通项公式:

f i b n = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) \mathrm{fib}_n=\frac 1{\sqrt 5}\left((\frac{1+\sqrt5}2)^n-(\frac{1-\sqrt5}2)^n\right) fibn=5 1((21+5 )n(215 )n)


关于下降幂的一些转化

  • x n ‾ = ∑ i = 0 n [ n i ] ( − 1 ) n − i x i x^{\underline n}=\sum_{i=0}^n\begin{bmatrix}n\\i\end{bmatrix}(-1)^{n-i}x^i xn=i=0n[ni](1)nixi

其中 [ n i ] \begin{bmatrix}n\\i\end{bmatrix} [ni] 表示第一类斯特林数。

证明:考虑用数学归纳法

x n + 1 ‾ = ( x − n ) x n ‾ = x ⋅ x n ‾ − n x n ‾ = ( ∑ i = 0 n [ n i ] ( − 1 ) n − i x i + 1 ) − ( n ∑ i = 0 n [ n i ] ( − 1 ) n − i x i ) = ( ∑ i = 1 n + 1 [ n i − 1 ] ( − 1 ) n − i − 1 x i ) − ( n ∑ i = 1 n + 1 [ n i ] ( − 1 ) n − i x i ) = ∑ i = 1 n + 1 ( [ n i − 1 ] + n [ n i ] ) ( − 1 ) n + 1 − i x i = ∑ i = 1 n + 1 [ n + 1 i ] ( − 1 ) n + 1 − i x i \begin{aligned} x^{\underline {n+1}} &= (x-n) x^{\underline n}\\ &= x\cdot x^{\underline n} - n x^{\underline n}\\ &= \left ( \sum_{i=0}^n \begin{bmatrix}n\\i\end{bmatrix} (-1)^{n-i} x^{i+1} \right ) - \left (n\sum_{i=0}^n \begin{bmatrix}n\\i\end{bmatrix} (-1)^{n-i} x^i \right )\\ &= \left ( \sum_{i=1}^{n+1} \begin{bmatrix}n\\i-1\end{bmatrix} (-1)^{n-i-1} x^i \right ) - \left (n\sum_{i=1}^{n+1} \begin{bmatrix}n\\i\end{bmatrix} (-1)^{n-i} x^i \right )\\ &=\sum_{i=1}^{n+1}\left (\begin{bmatrix}n\\i-1\end{bmatrix} + n \begin{bmatrix}n\\i\end{bmatrix} \right )(-1)^{n+1-i}x^i\\ &=\sum_{i=1}^{n+1}\begin{bmatrix}n+1\\i\end{bmatrix} (-1)^{n+1-i} x^i \end{aligned} xn+1=(xn)xn=xxnnxn=(i=0n[ni](1)nixi+1)(ni=0n[ni](1)nixi)=(i=1n+1[ni1](1)ni1xi)(ni=1n+1[ni](1)nixi)=i=1n+1([ni1]+n[ni])(1)n+1ixi=i=1n+1[n+1i](1)n+1ixi

  • x n = ∑ k = 0 n { n k } x k ‾ x^n = \sum_{k=0}^{n} \begin{Bmatrix}n\\k\end{Bmatrix} x^{\underline{k}} xn=k=0n{nk}xk

其中 { n i } \begin{Bmatrix}n\\i\end{Bmatrix} {ni} 表示第二类斯特林数。

证明:还是考虑用数学归纳法

x n = x ⋅ x n − 1 = x ∑ i = 0 n − 1 { n − 1 i } x i ‾ = ∑ i = 0 n − 1 { n − 1 i } ( x i + 1 ‾ + i x i ‾ ) = ∑ i = 0 n − 1 { n − 1 i } x i + 1 ‾ + ∑ i = 0 n − 1 { n − 1 i } i x i ‾ = ∑ i = 0 n { n − 1 i − 1 } x i ‾ + ∑ i = 0 n − 1 { n − 1 i } i x i ‾ = ∑ i = 0 n ( { n − 1 i − 1 } + i { n − 1 i } ) x i ‾ = ∑ i = 0 n { n i } x i ‾ \begin {aligned}x^n &= x \cdot x^{n-1} \\ &=x \sum_{i=0}^{n-1} \begin{Bmatrix}n-1\\i\end{Bmatrix} x^{\underline i}\\ &=\sum_{i=0}^{n-1} \begin{Bmatrix}n-1\\i\end{Bmatrix} (x^{\underline {i+1}}+ix^{\underline i}) \\ &=\sum_{i=0}^{n-1} \begin{Bmatrix}n-1\\i\end{Bmatrix} x^{\underline {i+1}}+\sum_{i=0}^{n-1} \begin{Bmatrix}n-1\\i\end{Bmatrix}ix^{\underline i} \\ &=\sum_{i=0}^{n} \begin{Bmatrix}n-1\\i-1\end{Bmatrix} x^{\underline {i}}+\sum_{i=0}^{n-1} \begin{Bmatrix}n-1\\i\end{Bmatrix}ix^{\underline i} \\ &=\sum_{i=0}^{n} \left ( \begin{Bmatrix}n-1\\i-1\end{Bmatrix}+i\begin{Bmatrix}n-1\\i\end{Bmatrix} \right ) x^{\underline i}\\ &=\sum_{i=0}^{n} \begin{Bmatrix}n\\i\end{Bmatrix} x^{\underline{i}} \end {aligned} xn=xxn1=xi=0n1{n1i}xi=i=0n1{n1i}(xi+1+ixi)=i=0n1{n1i}xi+1+i=0n1{n1i}ixi=i=0n{n1i1}xi+i=0n1{n1i}ixi=i=0n({n1i1}+i{n1i})xi=i=0n{ni}xi


秦九韶算法

把一个 n n n 次多项式 f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0,改写成如下形式:

f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 = ( a n x n − 1 + a n − 1 x n − 2 + ⋯ + a 2 x + a 1 ) x + a 0 = ( ( a n x n − 2 + a n − 1 x n − 3 + ⋯ + a 3 x + a 2 ) x + a 1 ) x + a 0      ⋮ = ( ⋯ ( ( a n x + a n − 1 ) x + a n − 2 ) x + ⋯ + a 1 ) x + a 0 \begin{aligned} f(x)&=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\\ &=(a_nx^{n-1}+a_{n-1}x^{n-2}+\cdots+a_2x+a_1)x+a_0\\ &=((a_nx^{n-2}+a_{n-1}x^{n-3}+\cdots+a_3x+a_2)x+a_1)x+a_0\\ &\;\;\vdots\\ &=(\cdots((a_nx+a_{n-1})x+a_{n-2})x+\cdots+a_1)x+a_0 \end{aligned} f(x)=anxn+an1xn1++a1x+a0=(anxn1+an1xn2++a2x+a1)x+a0=((anxn2+an1xn3++a3x+a2)x+a1)x+a0=(((anx+an1)x+an2)x++a1)x+a0

于是,求值时,先计算出 v 1 = a n x + a n − 1 v_1=a_nx+a_{n-1} v1=anx+an1 的值,然后通过 v 2 = v 1 x + a n − 2 , v 3 = v 2 x + a n − 3 ⋯ v_2=v_1x+a_{n-2},v_3=v_2x+a_{n-3}\cdots v2=v1x+an2,v3=v2x+an3 得到答案。

运用秦九韶算法可以简化运算过程


泰勒展开

若函数 f ( x ) f(x) f(x) 在包含 x 0 x_0 x0 的某个闭区间 [ a , b ] [a,b] [a,b] 上具有 n n n 阶导数,且在开区间 ( a , b ) (a,b) (a,b) 上具有 ( n + 1 ) (n+1) (n+1) 阶导数,则对闭区间 [ a , b ] [a,b] [a,b] 上任意一点 x x x,下式成立:

f ( x ) = f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ⋯ f(x)=\frac{f(x_0)}{0!}+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\cdots f(x)=0!f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+


莱布尼茨公式

一般的,如果函数 u = u ( x ) u=u(x) u=u(x) 与函数 v = v ( x ) v=v(x) v=v(x) 在点 x x x 处都具有 n n n 阶导数,那么此时有:

( u v ) ( n ) = ∑ i = 0 n ( n i ) u ( i ) v ( n − i ) (uv)^{(n)}=\sum_{i=0}^{n}\binom n iu^{(i)}v^{(n-i)} (uv)(n)=i=0n(in)u(i)v(ni)


洛必达法则

lim ⁡ x → a f ( x ) = 0 \lim\limits_{x\rightarrow a}f(x)=0 xalimf(x)=0 lim ⁡ x → a g ( x ) = 0 \lim\limits_{x\rightarrow a}g(x)=0 xalimg(x)=0,在点 a a a 的某去心邻域内两者都可导,且 g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0,那么有:

lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)


拉格朗日反演

如果多项式 f f f g g g 满足 g ( f ( x ) ) = x g(f(x))=x g(f(x))=x,那么一定有 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x,这时我们称 f f f g g g 互为复合逆

f f f g g g 互为复合逆,我们有:

[ x n ] f ( x ) = 1 n [ x − 1 ] 1 g n ( x ) [x^n]f(x)=\frac 1 n[x^{-1}]\frac{1}{g^n(x)} [xn]f(x)=n1[x1]gn(x)1

扩展

[ x n ] h ( f ( x ) ) = 1 n [ x − 1 ] h ′ ( x ) g n ( x ) [x^n]h(f(x))=\frac 1 n[x^{-1}]\frac{h'(x)}{g^n(x)} [xn]h(f(x))=n1[x1]gn(x)h(x)


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值