我对sobel算子的理解

本文深入探讨了Sobel算子在边缘检测中的应用,详细介绍了其计算原理,包括横向和纵向的亮度差分近似值。通过实际代码展示了Sobel算子在不同角度的卷积效果,并对比了各向同性Sobel算子。同时,讨论了Sobel算子在图像处理中的优点和不足,如效率高但可能无法精确区分图像主体与背景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

索贝尔算子Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量

Sobel卷积因子为:

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,GxGy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

具体计算如下:

图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

 

通常,为了提高效率使用不开平方的近似值:

 

然后可用以下公式计算梯度方向:

 

若图像为: 

 

则使用近似公式的计算的结果为:

 

 

Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。将Sobel算子矩阵中的所有2改为根号2,就能得到各向同性Sobel的矩阵。

  由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,即Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

 

 

 

参考:http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

http://blog.csdn.net/tianhai110/article/details/5663756

 

除此之外:由于基础核具有关于0,0,0所在的中轴正负对称,所以通过对基础核的旋转,和图像做卷积,可以获得灰度图的边缘图,同时消去旋转角方向+180°上的边缘,迭代多个方向即可消去多个方向的边缘,但是为消去的边缘会加倍。

基础核:

0°

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值