康托展开与逆康托展开

康托展开逆康托展开 与排列与排名密切相关。

康托展开

康托展开 被用来求一个排列的排名,时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

假设我们要求排列 n = 5 , a [ ] = { 3 , 4 , 1 , 5 , 2 } n=5,a[]=\{3,4,1,5,2\} n=5,a[]={3,4,1,5,2} 的排名。

定义 s [ i ] s[i] s[i] 表示在 a [ i ] a[i] a[i] 后面的数中,有多少个比 a [ i ] a[i] a[i] 要小。不难得到 s [ ] = { 2 , 2 , 0 , 1 , 0 } s[]=\{2,2,0,1,0\} s[]={2,2,0,1,0}

设原排列的排名是 k k k,则 k = ∑ i = 1 n − 1 ( s [ i ] × ( n − i ) ! ) k=\sum_{i=1}^{n-1}({s[i]\times(n-i)!}) k=i=1n1(s[i]×(ni)!)

在上面的例子中,排名 k = 61 k=61 k=61。代码实现较为简单,在此不给出代码。

逆康托展开

逆康托展开 被用来求排名为 k k k 的排列,时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)

假设我们要求排名为 k = 61 k=61 k=61 的排列。

同样定义 s [ i ] s[i] s[i] 表示在 a [ i ] a[i] a[i] 后面的数中,有多少个比 a [ i ] a[i] a[i] 要小。逆康托展开能根据排名求出 s [ ] s[] s[] 数组,进而算出原排列。

算法流程

  1. x = 1 x=1 x=1
  2. s [ x ] = k / ( n − x ) ! , k = k m o d    ( n − x ) ! s[x]=k/(n-x)!,k=k\mod(n-x)! s[x]=k/(nx)!,k=kmod(nx)!
  3. x x x 的值设为 2 2 2,重复 2.;直到 x x x 变为 n − 1 n-1 n1
  4. s [ n ] = 0 s[n]=0 s[n]=0

在上面的例子中,

61/4!=2…13,s[1]=2;
13/3!=2…1,s[2]=2;
1/2!=0…1,s[3]=0;
1/1!=1…0,s[4]=1;s[5]=0。

所以 s [ ] = { 2 , 2 , 0 , 1 , 0 } s[]=\{2,2,0,1,0\} s[]={2,2,0,1,0}

使用树状数组求出 a [ ] a[] a[] 数组即可。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值