目录
一、决策树介绍
决策树(decision tree)
是一类常见的机器学习方法。基于树结构来进行决策。决策树学习的目的是为了产生一颗泛化能力强,即处理未见实例能力强的决策树。
一般的,一颗决策树包含一个根结点
、若干个内部结点
和若干个叶结点
;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶结点的路径对应一个判定测试序列。
1. 基本流程
决策树的基本流程遵循简单且直观的“分而治之”(divide-and-conquer)
策略。
决策树的生成是一个递归过程,再决策树的基本算法中,以下三种情况会导致递归返回:
- 当前结点包含的样本全属于同一类别,无需划分。
- 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分。
- 当前结点包含的样本集合为空,不能划分。
2. 选择划分因素
生成决策树的关键在于如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”(purity)
越来越高。
(1)信息熵(information entropy)
信息熵(information entropy)
是度量样本集合纯度的最常用的一种指标。
假定样本集合
D
D
D中第
k
k
k类样本所占的比例为
p
k
(
k
=
1
,
2
,
.
.
.
,
∣
y
∣
)
p_k(k = 1,2,...,|y|)
pk(k=1,2,...,∣y∣),则
D
D
D的信息熵定义为:
E
n
t
(
D
)
=
−
∑
k
=
1
∣
y
∣
p
k
l
o
g
2
p
k
Ent(D) = - \sum_{k=1}^{|y|} p_k log_2p_k
Ent(D)=−k=1∑∣y∣pklog2pk
显然, E n t ( D ) Ent(D) Ent(D)的值越小,集合 D D D的纯度越高。
因为 p k ∈ [ 0 , 1 ] p_k \in[0,1] pk∈[0,1] ,故 l o g 2 p k ≤ 0 log_2p_k\leq0 log2pk≤0 , E n t ( D ) ≥ 0 Ent(D)\geq0 Ent(D)≥0. 极限情况下,考虑 D D D 中样本同属于同一类,则此时的 E n t ( D ) Ent(D) Ent(D) 值为 0 0 0(取到最小值)。当 D D D 中样本都分别属于不同类别时, E n t ( D ) Ent(D) Ent(D)取到最大值 l o g 2 ∣ y ∣ log_2 |y| log2∣y∣ 。
(2)信息增益 (information gain)
假定离散属性
a
a
a 有
V
V
V 个可能的取值 {
a
1
,
a
2
,
.
.
.
a
V
a^1,a^2,...a^V
a1,a2,...aV},若使用
a
a
a 来对样本集
D
D
D 进行划分,则会产
V
V
V 个分支结点,其中第
v
v
v 个分支结点包含了
D
D
D 中所有在属性
a
a
a 上的取值为
a
v
a^v
av 的样本,记为
D
v
D^v
Dv 。由于不同分支结点包含的样本数不同,给分支结点赋予权重
∣
D
v
∣
∣
D
∣
\frac{|D^v|}{|D|}
∣D∣∣Dv∣ ,即样本数量越多的分支结点影响越大。由此可计算出用属性
a
a
a 对样本集
D
D
D 进行划分所获得的信息增益(information gain)
G
a
i
n
(
D
,
a
)
=
E
n
t
(
D
)
−
∑
v
=
1
V
∣
D
v
∣
∣
D
∣
E
n
t
(
D
v
)
Gain(D,a) = Ent(D) - \sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v)
Gain(D,a)=Ent(D)−v=1∑V∣D∣∣Dv∣Ent(Dv)
信息增益越大,则意味着使用属性
a
a
a 来进行划分所获得的“纯度提升”越大,此次划分的效果越好。因此,我们可用信息增益来进行决策树的划分属性选择。
I
D
3
ID3
ID3决策树学习算法就是以信息增益为准则来选择划分属性
(3)增益率(gain ratio)
基于信息增益的最优属性划分原则——信息增益准则
,对可取值数据较多的属性有所偏好。
C
4.5
C4.5
C4.5算法使用增益率代替信息增益来选择最优划分属性,增益率定义为:
G
a
i
n
_
r
a
t
i
o
(
D
,
a
)
=
G
a
i
n
(
D
,
a
)
I
V
(
a
)
Gain\_ratio(D,a) = \frac{Gain(D,a)}{IV(a)}
Gain_ratio(D,a)=IV(a)Gain(D,a)
其中
I
V
(
a
)
=
−
∑
v
=
1
V
∣
D
v
∣
∣
D
∣
l
o
g
2
∣
D
v
∣
∣
D
∣
IV(a) = - \sum_{v=1}^{V}\frac{|D^v|}{|D|}log_2\frac{|D^v|}{|D|}
IV(a)=−v=1∑V∣D∣∣Dv∣log2∣D∣∣Dv∣
称为属性
a
a
a 的固有值。属性
a
a
a 的可能取值数目越多(即
V
V
V越大),则
I
V
(
a
)
IV(a)
IV(a) 的值通常会越大。这在一定程度上消除了对可取值数据较多的属性的偏好。
事实上,增益率准则对可取值数目较少的属性有所偏好,
C
4.5
C4.5
C4.5 算法并不是直接使用增益率准则,而是先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。
(4)基尼指数(Gini index)
C
A
R
T
CART
CART 决策树算法使用基尼指数(Gini index)来选择划分属性。数据集
D
D
D 的纯度可用基尼值来度量:
G
i
n
i
(
D
)
=
∑
k
=
1
∣
y
∣
∑
k
′
≠
k
p
k
p
k
′
=
1
−
∑
k
=
1
∣
y
∣
p
k
2
\begin{aligned} Gini(D)&= \sum_{k=1}^{|y|}\sum_{k' \neq k}p_kp_{k'} \\ &=1 - \sum_{k=1}^{|y|}p_k^2 \\ \end{aligned}
Gini(D)=k=1∑∣y∣k′=k∑pkpk′=1−k=1∑∣y∣pk2
G
i
n
i
(
D
)
Gini(D)
Gini(D) 反应了从数据集
D
D
D 中随机抽取两个样本,其类别标记不一致的概率。由此,
G
i
n
i
(
D
)
Gini(D)
Gini(D) 越小,纯度越高。
属性
a
a
a 的基尼指数定义为:
G
i
n
i
_
i
n
d
e
x
(
D
,
a
)
=
∑
v
=
1
V
∣
D
v
∣
∣
D
∣
G
i
n
i
(
D
v
)
Gini\_index(D,a) = \sum_{v=1}^{V}\frac{|D^v|}{|D|}Gini(D^v)
Gini_index(D,a)=v=1∑V∣D∣∣Dv∣Gini(Dv)
在候选属性集合
A
A
A 中,选择那个使得划分后基尼指数最小的属性作为最优化分属性。即
a
∗
=
arg
a
∈
A
min
G
i
n
i
_
i
n
d
e
x
(
D
,
a
)
a_* = \arg_{a\in A} \min {Gini\_index(D,a)}
a∗=arga∈AminGini_index(D,a)
二、实现基于信息增益准则(ID3)的决策树
1. 数据样本处理
本文案例基于教材《机器学习》
P
76
P76
P76 表4.1西瓜数据集2.0,使用Python构建一棵基于信息增益准则的决策树。
2. 代码实现
(1)建立决策树
- 计算信息熵函数
#计算信息熵
def calcInformationEntropy(dataSet):
#dataSet最后一列是类别,前面是特征
dict = {}
m = len(dataSet)
for i in range(m):
#.get()函数:如果没有这个key,就返回默认值;如果有这个key,就返回这个key的value
dict[dataSet[i][-1]] = dict.get(dataSet[i][-1], 0) + 1;
ent = 0
for key in dict.keys():
p = float(dict[key]) / m
ent = ent - (p * np.math.log(p, 2))
return ent
- 划分数据集函数
#划分数据集
#dataSet:数据集
#axis: 要划分的列下标
#value: 要划分的列的值
def splitDataSet(dataSet, axis, value):
splitedDataSet = []
for data in dataSet:
if(data[axis] == value):
reduceFeatureVec = data[: axis]
reduceFeatureVec.extend(data[axis + 1 :])
splitedDataSet.append(reduceFeatureVec)
return splitedDataSet
- 计算信息增益函数
#计算信息增益,然后选择最优的特征进行划分数据集
#信息增益的计算公式:西瓜书P75
def chooseBestFeatureToSplit(dataSet):
#计算整个集合的熵
EntD = calcInformationEntropy(dataSet)
mD = len(dataSet) #行
featureNumber = len(dataSet[0][:]) - 1 #列
maxGain = -1000
bestFeatureIndex = -1
for i in range(featureNumber):
#featureSet = set(dataSet[:][i]) #错误写法:dataSet[:][i]仍然是获取行
featureCol = [x[i] for x in dataSet] #取列表某列的方法!!
featureSet = set(featureCol)
splitedDataSet = []
for av in featureSet:
retDataSet = splitDataSet(dataSet, i, av)
splitedDataSet.append(retDataSet)
gain = EntD
for ds in splitedDataSet:
mDv = len(ds)
gain = gain - (float(mDv) / mD) * calcInformationEntropy(ds)
if(bestFeatureIndex == -1):
maxGain = gain
bestFeatureIndex = i
elif(maxGain < gain):
maxGain = gain
bestFeatureIndex = i
return bestFeatureIndex
#当所有的特征划分完了之后,如果仍然有叶子节点中的数据不是同一个类别,
# 则把类别最多的作为这个叶子节点的标签
def majorityCnt(classList):
dict = {}
for label in classList:
dict[label] = dict.get(label, 0) + 1
sortedDict = sorted(dict, dict.items(), key = operator.itemgetter(1), reversed = True)
return sortedDict[0][0]
- 递归构建决策树
#递归构建决策树
def createTree(dataSet, labels):
classList = [x[-1] for x in dataSet]
# if(len(set(classList)) == 1):
# return classList[0]
if(classList.count(classList[0]) == len(classList)):
return classList[0]
elif(len(dataSet[0]) == 1): #所有的属性全部划分完毕
return majorityCnt(classList)
else:
bestFeatureIndex = chooseBestFeatureToSplit(dataSet)
bestFeatureLabel = labels[bestFeatureIndex]
myTree = {bestFeatureLabel: {}}
del(labels[bestFeatureIndex]) #使用完该属性之后,要删除
featureList = [x[bestFeatureIndex] for x in dataSet]
featureSet = set(featureList)
for feature in featureSet:
subLabels = labels[:] #拷贝一份,防止label在递归的时候被修改 (list是传引用调用)
tmpDataSet = splitDataSet(dataSet, bestFeatureIndex, feature) #划分数据集
myTree[bestFeatureLabel][feature] = createTree(tmpDataSet, subLabels)
return myTree
- 读取数据
#读取西瓜数据集2.0
def readWatermelonDataSet():
ifile = open("周志华_西瓜数据集2.txt")
featureName = ifile.readline() #表头
labels = (featureName.split(' ')[0]).split(',')
lines = ifile.readlines()
dataSet = []
for line in lines:
tmp = line.split('\n')[0]
tmp = tmp.split(',')
dataSet.append(tmp)
return dataSet, labels
- 输出
melonDataSet, melonLabels = readWatermelonDataSet()
print(melonLabels)
melonBestFeature = chooseBestFeatureToSplit(melonDataSet)
tree = createTree(melonDataSet, melonLabels)
print(tree)
输出结果:
[‘色泽’, ‘根蒂’, ‘敲声’, ‘纹理’, ‘脐部’, ‘触感’, ‘好瓜’]
{‘纹理’: {‘稍糊’: {‘触感’: {‘软粘’: ‘是’, ‘硬滑’: ‘否’}}, ‘模糊’: ‘否’, ‘清晰’: {‘根蒂’: {‘蜷缩’: ‘是’, ‘稍蜷’: {‘色泽’: {‘乌黑’: {‘触感’: {‘软粘’: ‘否’, ‘硬滑’: ‘是’}}, ‘青绿’: ‘是’}}, ‘硬挺’: ‘否’}}}}
(2)绘制决策树
#使用Matlotlib绘制决策树
import matplotlib.pyplot as plt
#设置文本框和箭头格式
decisionNode = dict(boxstyle = "sawtooth", fc = "0.8")
leafNode = dict(boxstyle = "round4", fc = "0.8")
arrow_args = dict(arrowstyle = "<-")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family'] = 'sans-serif'
#画节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy = parentPt,\
xycoords = "axes fraction", xytext = centerPt, textcoords = 'axes fraction',\
va = "center", ha = "center", bbox = nodeType, arrowprops = arrow_args)
#获取决策树的叶子节点数
def getNumLeafs(myTree):
leafNumber = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if(type(secondDict[key]).__name__ == 'dict'):
leafNumber = leafNumber + getNumLeafs(secondDict[key])
else:
leafNumber += 1
return leafNumber
#获取决策树的高度(递归)
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
#test to see if the nodes are dictonaires, if not they are leaf nodes
if type(secondDict[key]).__name__=='dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
#在父子节点添加信息
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
#画树
def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
numLeafs = getNumLeafs(myTree) #this determines the x width of this tree
depth = getTreeDepth(myTree)
firstStr = list(myTree.keys())[0] #the text label for this node should be this
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
plotTree(secondDict[key],cntrPt,str(key)) #recursion
else: #it's a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#画布初始化
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks
#createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
plotTree(inTree, (0.5,1.0), '')
plt.show()
- 定义主函数
def main():
#createPlot()
print(getTreeDepth(tree)) #输出数的深度
print(getNumLeafs(tree)) #输出数的叶子个数
createPlot(tree)
输出结果
:
main()
4
8
3. 结果分析
先看《机器学习》教材给出的标准决策树:
将书上的结果与我们获得的结果进行对比,基本是一致的,但还是有略微的区别,我们缺少一个色泽为浅白的叶。通过对样本数据与代码的检查最终找到缺失原因:原始数据中不存在纹理为清晰、根蒂为稍蜷且色泽为浅白的瓜,导致决策树缺失这种情况的子叶。
三、使用Sklearn库实现决策树
1. 基于信息增益准则( I D 3 ID3 ID3或 C 4.5 C4.5 C4.5)方法建立决策树
- 导入相关库
#导入相关库
import pandas as pd
import graphviz
from sklearn.model_selection import train_test_split
from sklearn import tree
- 导入数据
f = open('周志华_西瓜数据集2.csv','r')
data = pd.read_csv(f)
x = data[["色泽","根蒂","敲声","纹理","脐部","触感"]].copy()
y = data['好瓜'].copy()
print(data)
- 数据预处理
- 将特征值数值化
#将特征值数值化
x = x.copy()
for i in ["色泽","根蒂","敲声","纹理","脐部","触感"]:
for j in range(len(x)):
if(x[i][j] == "青绿" or x[i][j] == "蜷缩" or data[i][j] == "浊响" \
or x[i][j] == "清晰" or x[i][j] == "凹陷" or x[i][j] == "硬滑"):
x[i][j] = 1
elif(x[i][j] == "乌黑" or x[i][j] == "稍蜷" or data[i][j] == "沉闷" \
or x[i][j] == "稍糊" or x[i][j] == "稍凹" or x[i][j] == "软粘"):
x[i][j] = 2
else:
x[i][j] = 3
y = y.copy()
for i in range(len(y)):
if(y[i] == "是"):
y[i] = int(1)
else:
y[i] = int(-1)
- 将数据转换为
DataFrame
数据类型
#需要将数据x,y转化好格式,数据框dataframe,否则格式报错
x = pd.DataFrame(x).astype(int)
y = pd.DataFrame(y).astype(int)
print(x)
print(y)
- 划分训练集与测试集
- 将
80%
数据用于训练,20%
数据用于测试
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
print(x_train)
- 建立模型并训练
#决策树学习
clf = tree.DecisionTreeClassifier(criterion="entropy") #实例化
clf = clf.fit(x_train, y_train)
score = clf.score(x_test, y_test)
print(score)
DecisionTreeClassifier函数
参数解释:
sklearn.tree.DecisionTreeClassifier(criterion=’gini’,\
splitter=’best’, \
max_depth=None, \
min_samples_split=2, \
min_samples_leaf=1,\
min_weight_fraction_leaf=0.0, \
max_features=None, \
max_leaf_nodes=None, \
min_impurity_decrease=0.0,\
min_impurity_split=None, \
class_weight=None, \
presort=False)
参数 | 含义 |
---|---|
criterion | 选择结点划分质量的度量标准,默认使用"gini" ,即基尼系数,基尼系数是CART算法中采用的度量标准,该参数还可以设置为"entropy" ,表示基于信息增益
I
D
3
ID3
ID3或
C
4.5
C4.5
C4.5建立决策树 |
splitter | 结点划分时的策略,默认使用"best" 。"best" 表示依据选用的criterion标准,还可以设置为"random" ,表示最优的随机划分属性 |
max_depth | 设置决策树的最大深度 ,默认为None 。 |
min_samples_split | 当对一个内部结点划分时,要求该内部结点上的最小样本数 ,默认为2 |
min_samples_leaf | 设置叶子结点上的最小样本数 ,默认为1 |
min_weight_fraction_leaf | 设置每一个叶子节点上样本的权重和的最小值 ,该参数默认为0 |
max_features | 划分结点、寻找最优划分属性时,设置允许搜索的最大属性个数 ,默认为None |
max_leaf_nodes | 设置决策树的最大叶子节点个数 ,该参数与max_depth等参数一起限制决策树的复杂度,默认为None ,表示不加限制 |
min_impurity_decrease | 默认值为0 ,可以通过设置该参数来提前结束树的生长 |
class_weight | 设置样本数据中每个类的权重 ,这里权重是针对整个类的数据设定的,默认为None ,即不施加权重 |
presort | 设置对训练数据进行预排序,以提升结点最优划分属性的搜索,默认为False |
- 可视化决策树
feature_name = ["色泽","根蒂","敲声","纹理","脐部","触感"]
dot_data = tree.export_graphviz(clf
,feature_names= feature_name
,class_names=["好瓜","坏瓜"]
,filled=True
,rounded=True
,out_file =None
)
graph = graphviz.Source(dot_data)
graph
2. 基于基尼指数( C A R T CART CART)建立决策树
根据DecisionTreeClassifier函数
参数解释可知,只需将criterion
值改为"gini"
,即可基于基尼指数(
C
A
R
T
CART
CART)建立决策树。
#决策树学习
clf = tree.DecisionTreeClassifier(criterion="gini") #实例化
clf = clf.fit(x_train, y_train)
score = clf.score(x_test, y_test)
print(score)
得到输出:
- 可视化(
C
A
R
T
CART
CART)决策树
四、总结
本文西瓜数据集2.0,使用Python自定义构建一棵基于信息增益准则ID3的决策树,并通过Matlotlib绘制该决策树。
本文通过学习使用sklearn库中DecisionTreeClassifier函数
分别根据
I
D
3
ID3
ID3、
C
4.5
C4.5
C4.5和
C
A
R
T
CART
CART方法实现了决策树,并使用export_graphviz函数
绘制生成的决策树。但由于样本数据量过小,导致每次划分的测试集与训练集变化较大,以至于模型精准度浮动较大。并且使用sklearn库
时,必须将特征量以及标签转化为数值型才能生成模型。