A 区间选点
题目描述
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点。
输入格式
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
输出格式
输出一个整数表示最少选取的点的个数。
样例输入
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
1
2
3
4
5
样例输出
6
思路
差分约束:
差分约束系统是用来解决一种特殊的n元一次不等式组,它包含n个变量与m个约束条件。
每个约束条件是两个变量的差构成的,如xi-xj<=ck,其中ck为常数。
我们是要求出一组解,x1=a1,x2=a2……x3=a3使得所有约束条件得以满足。
对于系统中任一不等式xi-xj<=ck,可转化为xi<=xj+ck,假设xj为0,则我们需要在多个不等式中找到最小的ck来限制xi的条件,即我们需要在多个xi<=xj+c中找到最小的c,因此这里可以把xi,xj想象成图中的点,ck为边权,我们需要找到所有点对于某一基准点的最短路径,这样就把差分模型转化为最短路模型。
同理对于xi-xj>=ck的模型可以采用最长路模型来解决,在这两种模型中最后得到的都是等于的边界。
设sum[x]为x点在[0,x]区间内选的点数,对于每个区间[a,b]内选c个点,则有sum[a]-sum[b-1]>=c,为了使sum有意义,对于每个数i,存在0<=sum[i+1]-sum[i]<=1;
将两种约束带入就可以得到最后的数值
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
long long dis[50005];
int vis[50005];
struct node {
int b;
int c;
node* next;
node() {
}
node(int b, int c, node* next) :b(b), c(c), next(next) {
}
};
void SPFA(node** edge)
{
queue<int> q;
q.push(0); dis[0] = 0;
while (q.size()) {
int u = q.front();
q.pop();
vis[u] = 0;
node* thisnode = edge[u];
while (thisnode != NULL) {
if (dis[thisnode->b] < dis[u] + thisnode->c)//-6 -8 //6 -7 5 -10
{
dis[thisnode->b] = dis[u] + thisnode->c;
if (!vis[thisnode->b])
{
q.push(thisnode->b);
vis[thisnode->b]=1;
}
}
thisnode = thisnode->next;
}
}
}
int main() {
int n;
while (scanf("%d", &n) != EOF) {
memset(dis,-1,sizeof(dis));
memset(vis,0,sizeof(vis));
node* edge[50005] = { 0 };
int maxy = 0;
int x,y,z;
for (int i = 0; i < n; i++) {
scanf("%d%d%d", &x, &y, &z);
edge[x-1] = new node(y, z, edge[x-1]);
if (y > maxy) maxy = y;
}
for (int i = 1; i <= maxy; i++) {
edge[i] = new node(i-1, -1, edge[i]);
edge[i-1] = new node(i, 0, edge[i-1]);
}
SPFA(edge);
for(int i = 0;i <= maxy;i++)
cout<<dis[i]<<endl;
}
}
B 猫猫向前冲
题目描述
众所周知, TT 是一位重度爱猫人士,他有一只神奇的魔法猫。
有一天,TT 在 B 站上观看猫猫的比赛。一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。比赛结束后,Up 主会为所有的猫猫从前到后依次排名并发放爱吃的小鱼干。不幸的是,此时 TT 的电子设备遭到了宇宙射线的降智打击,一下子都连不上网了,自然也看不到最后的颁奖典礼。
不幸中的万幸,TT 的魔法猫将每场比赛的结果都记录了下来,现在他想编程序确定字典序最小的名次序列,请你帮帮他。
输入格式
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。
输出格式
给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
样例输入
4 3
1 2
2 3
4 3
1
2
3
样例输出
1 2 4 3
思路
拓扑序列:
在一个有向无环图里,我们对图中的点进行排序,对于任意有向边(u,v),u必在v前面。
我们可以将图中入度为0的点加入一个集合S,从S中取出任意点u,对于该点,若存在边(u,v)则去除该边,则v入度减1,若入度变为0则同理加入集合。一直重复这一过程,则点出集合的顺序即为该图的一个拓扑序列。
若最后仍有点未排序,则图中必有环。
猫的胜负关系即可想象成图中的边,a胜b,则有a指向b的边,这些点的拓扑序列即为最终名次。因为要求输出字典序最小的拓扑序列,因此集合可用一个优先队列来代替,这时求出的拓扑序列即为所求。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 550;
int degree[maxn],head[maxn];
struct e{
int to,next;
}edge[maxn*maxn];
int tot,n;
void init()
{
for(int i = 0;i<=n;i++) head[i] =0, degree[i] = 0;
}
void add(int x,int y)
{
edge[++tot].to= y ; edge[tot].next = head[x]; head[x] = tot;
degree[y]++;
}
int main()
{
int m,x,y;
while(cin>>n>>m)
{
tot = 0;
init();
while(m--)
{
cin>>x>>y;
add(x,y);
}
//for( int i = 1;i<=n;i++) cout<<degree[i]<<endl;
priority_queue<int, vector<int>, greater<int>> q;
vector<int> p;
for( int i = 1;i<=n;i++)
if(degree[i]==0) q.push(i);
while(!q.empty()){
int i = q.top();q.pop();
p.push_back(i);
for(int j = head[i];j;j = edge[j].next)
if(--degree[edge[j].to]==0) q.push(edge[j].to) ;
}
for(int i = 0;i < n-1;i++){
cout<<p[i]<<" ";
}
cout<<p[n-1]<<endl;
}
}
C 班长竞选
题目描述
大学班级选班长,N 个同学均可以发表意见
若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适
勤劳的 TT 收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学,你能帮帮他吗?
输入格式
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。
输出格式
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。
接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!
样例输入
2
4 3
3 2
2 0
2 1
3 3
1 0
2 1
0 2
1
2
3
4
5
6
7
8
样例输出
Case 1: 2
0 1
Case 2: 2
0 1 2
1
2
3
DFS序:
前序:第一次到达x的次序
后序:x点遍历完的次序,即回溯次序
逆后序:后序的倒序
算法步骤
第一次DFS确定图的逆后序序列
第二次在反图(有向边反转)中按逆后序序列DFS,每次搜索到的点即为一个强连通分量。
首先确定图中的强连通分量,每个强连通分量中的人必然相互支持。
所以,每个强连通分量x中的点的支持数为sum(cnt(j))+cnt(x)-1,其中由j可达x,cnt(j)为联通分量j内的人数,sum为求和。
因此我们对强连通分量进行缩点(即每个强连通分量看作一个点),支持人数多的联通分量必然在出度为0的连通分量中。我们对缩点后的图求反图,则出度为0的点变为入度为0点,由该点进行搜索,搜到的点,即为原图中可达该点的点,同时对搜到的点所代表的连通分量的人数求和,可求得该点的支持人数。
最终输出最大支持人数的联通分量内的点即可,最终答案的联通分量数可能不止一个。
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <vector>
using namespace std;
const int N=5000+10;
const int M=30000+10;
struct Edge{
int to,next;
};
Edge e1[M],e2[M],e3[M];
int head1[N],tot=0,head2[N],head3[N];
void add3(int u,int v)
{
e3[++tot].to=v;
e3[tot].next=head3[u];
head3[u]=tot;
}
void add(int u,int v)
{
e1[++tot].to=v;
e1[tot].next=head1[u];
head1[u]=tot;
e2[tot].to=u;
e2[tot].next=head2[v];
head2[v]=tot;
}
int n,scc,dfnt,c[N],dfn[N],vis[N];
void dfs1(int s)
{
vis[s]=1;
for(int i=head1[s];i!=-1;i=e1[i].next)
{
int u=e1[i].to;
if(!vis[u])dfs1(u);
}
dfn[++dfnt]=s;
}
void dfs2(int s)
{
c[s]=scc;
for(int i=head2[s];i!=-1;i=e2[i].next)
{
int u=e2[i].to;
if(!c[u])dfs2(u);
}
}
void kosaraju()
{
dfnt=scc=0;
for(int i=0;i<=n;i++)
vis[i]=0,c[i]=0;
for(int i=0;i<n;i++)
if(!vis[i])dfs1(i);
for(int i=n;i>=1;i--)
if(!c[dfn[i]])++scc,dfs2(dfn[i]);
}
int main()
{
int T;
scanf("%d",&T);
for(int x=1;x<=T;x++)
{
int m;
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++)
head1[i]=-1,head2[i]=-1;
tot=0;
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
kosaraju();
set<int>ans;
int sum[scc+1];
int cnt[scc+1];
for(int i=0;i<=scc;i++)
sum[i]=0,cnt[i]=0,head3[i]=-1;
//set存边
set<pair<int,int>> ee;
for(int k=0;k<n;k++)
{
sum[c[k]]++;
for(int i=head1[k];i!=-1;i=e1[i].next)
{
int u=e1[i].to;
if(c[u]!=c[k])
{
ee.insert(make_pair(c[u],c[k]));
}
}
}
tot=0;
// for(int i =1;i<=n;i++)
// cout<<c[i]<<" ";
// cout<<endl;
for(auto it=ee.begin();it!=ee.end();it++)
{
add3(it->first,it->second);
cnt[it->second]++;
}
int Max=-1;queue<int>q;
for(int i=1;i<=scc;i++)
{
if(cnt[i]==0)q.push(i);
cnt[i]=0;
}
// for(int i = 1;i <=scc;i++)
// cout<<cnt[i]<<" ";
int vvis[scc+1];
while(!q.empty())
{
int temp=q.front();q.pop();
queue<int>qq;
qq.push(temp);
for(int i=1;i<=scc;i++)
vvis[i]=0;
vvis[temp]=1;
while(!qq.empty())
{
int now=qq.front();qq.pop();
cnt[temp]+=sum[now];
for(int i=head3[now];i!=-1;i=e3[i].next)
{
int ii=e3[i].to;
if(!vvis[ii])qq.push(ii),vvis[ii]=1;
}
}
Max=max(Max,cnt[temp]);
}
for(int i=1;i<=scc;i++)
if(cnt[i]==Max)ans.insert(i);
vector<int>last;
for(int i=0;i<n;i++)
{
if(ans.find(c[i])!=ans.end())
last.push_back(i);
}
printf("Case %d: %d\n",x,Max-1);
auto it=last.begin();
printf("%d",*it);it++;
while(it!=last.end())
printf(" %d",*it),it++;
printf("\n");
}
return 0;
}