第2章 感知机

1.感知机是根据输入实例的特征向量 x x x对其进行二类分类的线性分类模型:

f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=\operatorname{sign}(w \cdot x+b) f(x)=sign(wx+b)
感知机模型对应于输入空间(特征空间)中的分离超平面 w ⋅ x + b = 0 w \cdot x+b=0 wx+b=0

2.感知机学习的策略是极小化损失函数:

min ⁡ w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) \min _{w, b} L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) w,bminL(w,b)=xiMyi(wxi+b)
损失函数对应于误分类点到分离超平面的总距离。

3.感知机学习算法是基于随机梯度下降法的对损失函数的最优化算法,有原始形式和对偶形式。算法简单且易于实现。原始形式中,首先任意选取一个超平面,然后用梯度下降法不断极小化目标函数。在这个过程中一次随机选取一个误分类点使其梯度下降。

4.当训练数据集线性可分时,感知机学习算法是收敛的。感知机算法在训练数据集上的误分类次数 k k k满足不等式:

k ⩽ ( R γ ) 2 k \leqslant\left(\frac{R}{\gamma}\right)^{2} k(γR)2
当训练数据集线性可分时,感知机学习算法存在无穷多个解,其解由于不同的初值或不同的迭代顺序而可能有所不同。

二分类模型
f ( x ) = s i g n ( w ⋅ x + b ) f(x) = sign(w\cdot x + b) f(x)=sign(wx+b)

KaTeX parse error: Expected '}', got '&' at position 93: … {-1,} & {x&̲lt;0}\end{array…

给定训练集:

T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}

定义感知机的损失函数

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) L(w,b)=xiMyi(wxi+b)

算法
随即梯度下降法 Stochastic Gradient Descent

随机抽取一个误分类点使其梯度下降。

w = w + η y i x i w = w + \eta y_{i}x_{i} w=w+ηyixi

b = b + η y i b = b + \eta y_{i} b=b+ηyi

当实例点被误分类,即位于分离超平面的错误侧,则调整 w w w, b b b的值,使分离超平面向该无分类点的一侧移动,直至误分类点被正确分类

拿出iris数据集中两个分类的数据和[sepal length,sepal width]作为特征

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
#matplotlib inline
# 导入数据
iris = load_iris()#导入iris数据集,是安德森鸢尾花卉数据集。iris_data是一个类似字典的对象。
df = pd.DataFrame(iris.data, columns=iris.feature_names)#DataFrame生成二维数据表,列标为iris表的特征名
df['label'] = iris.target#iris的每个样本都包含了品种信息,即目标属性(第5列,也叫target或label)
df.columns = [
    'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
]#df的列标
print(df.label.value_counts())#显示标签的数量

输出:
2 50
1 50
0 50
Name: label, dtype: int64

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')#画散点图的范围
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')#横坐标的名称
plt.ylabel('sepal width')#纵坐标的名称
plt.legend()
plt.show()

输出:
在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
#将列表list或元组tuple转换为ndarray数组,iloc函数只根据行列号对数据进行索引,行到100,列为0,1,-1

X, y = data[:,:-1], data[:,-1]#x,y数据的取值。x取所有行,列到倒数第二列;y取所有行,列为最后一列

y = np.array([1 if i == 1 else -1 for i in y])

Perceptron

# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:# 定义类Model
    def __init__(self):# 创建类中的函数,也叫方法
        self.w = np.ones(len(data[0]) - 1, dtype=np.float32)
        self.b = 0
        self.l_rate = 0.1
        # self.data = data

    def sign(self, x, w, b):
        y = np.dot(x, w) + b
        return y

    # 随机梯度下降法
    def fit(self, X_train, y_train):
        is_wrong = False
        while not is_wrong:
            wrong_count = 0
            for d in range(len(X_train)):
                X = X_train[d]
                y = y_train[d]
                if y * self.sign(X, self.w, self.b) <= 0:#判断实例点是否误分类
                    self.w = self.w + self.l_rate * np.dot(y, X)#误分类后的赋值
                    self.b = self.b + self.l_rate * y#误分类后的赋值
                    wrong_count += 1#误分类的统计
            if wrong_count == 0:
                is_wrong = True
        return 'Perceptron Model!'

    def score(self):
        pass
perceptron = Model()
perceptron.fit(X, y)
x_points = np.linspace(4, 7, 10)#生成一个队列,队列开始值为4,结束值为7,生成10个数
y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1]#误分类点x到超平面的距离
plt.plot(x_points, y_)#画点

plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')#画点图的范围
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')#画点图的范围
plt.xlabel('sepal length')#横坐标的名称
plt.ylabel('sepal width')#纵坐标的名称
plt.legend()#添加图例
plt.show()#显示图片

输出:
在这里插入图片描述

import sklearn
from sklearn.linear_model import Perceptron
sklearn.__version__
clf = Perceptron(fit_intercept=True,
                 max_iter=1000,
                 shuffle=True)#感知机,fit_intercept为是否需要估计截距,max_iter最大迭代次数,
                              #shuffle为训练数据是否应该在每个epoch后进行洗牌。
clf.fit(X, y)
# 赋予特征的权重
print(clf.coef_)

输出:
[[ 23.2 -38.7]]

# 截距,决策函数中的常数。
print(clf.intercept_)

输出:
[-5.]

# 画布大小
plt.figure(figsize=(10,10))

# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')


plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)#画散点图的范围
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')#画散点图的范围

# 画感知机的线
x_ponits = np.arange(4, 8)#生成等差的数据,开始是4,结束是8
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]#不太明白!!
plt.plot(x_ponits, y_)

# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()#显示图片

输出:
在这里插入图片描述
注意 !

在上图中,有一个位于左下角的蓝点没有被正确分类,这是因为 SKlearn 的 Perceptron 实例中有一个tol参数。

tol 参数规定了如果本次迭代的损失和上次迭代的损失之差小于一个特定值时,停止迭代。所以我们需要设置 tol=None 使之可以继续迭代:

clf = Perceptron(fit_intercept=True,
                 max_iter=1000,
                 tol=None,
                 shuffle=True)#感知机
clf.fit(X, y)

# 画布大小
plt.figure(figsize=(10,10))

# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')

plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')

# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)

# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()#显示图片

输出:
在这里插入图片描述
所有的两种鸢尾花都被正确分类了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值