【pytorch】批训练 DataLoader

本文介绍了PyTorch中DataLoader的作用,详细解释了数据加载到模型的流程,包括创建Dataset对象和DataLoader对象。DataLoader可根据batch_size、shuffle等参数将数据组织成批次,用于模型的批训练。内容涵盖了DataLoader的关键参数如batch_size、shuffle、num_workers等,并通过实例展示了不同设置下的数据加载情况。
摘要由CSDN通过智能技术生成

我们训练模型要进行批训练的时候,就涉及到每一批选取什么数据的问题,pytorch的DataLoader就帮我们包装了数据,它能帮我们有效迭代数据,这样就可以进行批训练。

pytorch 数据加载到模型的流程

pytorch 的数据加载到模型的操作顺序是这样的:
① 创建一个 Dataset 对象
② 创建一个 DataLoader 对象
③ 循环这个 DataLoader 对象,将img, label加载到模型中进行训练

dataset = MyDataset()  #创建一个dataset对象
dataloader = DataLoader(dataset) #把dataset传入dataloader中得到一个dataloader对象
num_epoches = 100
for epoch in range(num_epoches): 
    for img, label in dataloader:
        ....

DataLoader

DataLoader将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练。

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值