5053. 地图分析
你现在手里有一份大小为 N x N 的『地图』(网格) grid
,上面的每个『区域』(单元格)都用 0
和 1
标记好了。其中 0
代表海洋,1
代表陆地,你知道距离陆地区域最远的海洋区域是是哪一个吗?请返回该海洋区域到离它最近的陆地区域的距离。
我们这里说的距离是『曼哈顿距离』( Manhattan Distance):(x0, y0)
和 (x1, y1)
这两个区域之间的距离是 |x0 - x1| + |y0 - y1|
。
如果我们的地图上只有陆地或者海洋,请返回 -1
。
示例 1:
输入:[[1,0,1],[0,0,0],[1,0,1]] 输出:2 解释: 海洋区域 (1, 1) 和所有陆地区域之间的距离都达到最大,最大距离为 2。
示例 2:
输入:[[1,0,0],[0,0,0],[0,0,0]] 输出:4 解释: 海洋区域 (2, 2) 和所有陆地区域之间的距离都达到最大,最大距离为 4。
提示:
1 <= grid.length == grid[0].length <= 100
grid[i][j]
不是0
就是1
运用广度优先搜索,首先将所有的大陆都加入堆栈,同时从每个大陆开始进行广度优先搜索,保证到达的每个海洋都是离最近的大陆的最短距离,记录期间的最大距离作为最后的输出。
class Solution {
public:
int dir_x[4] = { -1,0,0,1 };
int dir_y[4] = { 0,1,-1,0 };
int N = 0 ,Res = -1;
struct Road {
int x, y;
int len;
Road(int xx, int yy, int ll) {
x = xx; y = yy; len = ll;
}
};
queue<Road>store;
bool flag[101][101];
void BFS()
{
while (!store.empty())
{
Road front = store.front();
Res = front.len;
//cout << Res<<endl;
for (int i = 0; i < 4; i++)
{
int xx = front.x + dir_x[i];
int yy = front.y + dir_y[i];
//cout << xx <<" y= "<<yy<<endl;
if (xx>=0 && xx < N && yy>=0 && yy < N && flag[xx][yy] == 0)
{
flag[xx][yy] = 1;
cout << xx <<" y= "<<yy<<endl;
store.push(Road(xx, yy, front.len + 1));
}
}
store.pop();
}
}
int maxDistance(vector<vector<int>>& grid) {
N = grid[0].size();
cout <<N<<endl;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (grid[i][j] == 1)
{
store.push(Road(i , j, 0));
flag[i][j] = 1;
}
else
flag[i][j] = 0;
}
}
BFS();
if (Res == 0)
return -1;
else
return Res;
}
};