你现在手里有一份大小为 N x N 的『地图』(网格) grid
,上面的每个『区域』(单元格)都用 0
和 1
标记好了。其中 0
代表海洋,1
代表陆地,你知道距离陆地区域最远的海洋区域是是哪一个吗?请返回该海洋区域到离它最近的陆地区域的距离。
我们这里说的距离是『曼哈顿距离』( Manhattan Distance):(x0, y0)
和 (x1, y1)
这两个区域之间的距离是 |x0 - x1| + |y0 - y1|
。
如果我们的地图上只有陆地或者海洋,请返回 -1
。
示例 1:
输入:[[1,0,1],[0,0,0],[1,0,1]]
输出:2
解释:
海洋区域 (1, 1) 和所有陆地区域之间的距离都达到最大,最大距离为 2。
示例 2:
输入:[[1,0,0],[0,0,0],[0,0,0]]
输出:4
解释:
海洋区域 (2, 2) 和所有陆地区域之间的距离都达到最大,最大距离为 4。
提示:
1 <= grid.length == grid[0].length <= 100
grid[i][j]
不是0
就是1
思路:
问最短距离就上BFS。
先找到所有的陆地的坐标,然后BFS往外一圈一圈地找海洋,
统计一下BFS循环的次数就可以得到最远的陆海距离。
class Solution(object):
def maxDistance(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
from collections import deque
n = len(grid)
queue = deque()
dx = [1, -1, 0, 0]
dy = [0, 0, 1, -1]
for i in range(n):
for j in range(n):
if grid[i][j] == 1: #先找所有的陆地
queue.append((i, j))
if len(queue) == 0 or len(queue) == n * n: #全为海洋或全为陆地
return -1
distance = -1 #为啥是-1呢,因为第一次BFS是所有的陆地,第二次BFS才开始海洋,-1保证在第二次搜索时距离为1
while queue:
l = len(queue)
for _ in range(l):
cur = queue.popleft()
x0, y0 = cur
for k in range(4):
x = x0 + dx[k]
y = y0 + dy[k]
if 0 <= x < n and 0 <= y < n and grid[x][y] == 0: #找到海洋了
grid[x][y] = 1
queue.append((x, y))
distance += 1
return distance