hdu5399

根据题意可知,要满足题意给的那个合成函数,每一个函数f[i] 与{1,2, ···, n} 都必须是双射关系,即不存在f[i][j] == f[i][k](j != k), 因此对于一个不确定的函数, 其可能的情况有n!个。如果用cnt 表示-1出现的次数, 那么如果cnt-1个未知函数确定了, 那么为了满足题目条件,剩下的未知函数是确定的。所以答案即为cnt-1个不确定函数的排列情况:(n!)^(cnt - 1)。另外对于cnt 等于0的情况,要验证是否满足题意。代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>

using namespace std;

const int MAXN = 102;
const int MOD = 1000000007;
int f[MAXN][MAXN], n, m;
bool che[MAXN];


int solve(int cnt)
{
    if(cnt == 1 || cnt == 0)
    {
        return 1;
    }
    long long  per = 1, ans = 1;
    int i;
    for(i = n; i >= 2; i--)
    {
        per = per * i % MOD;
    }
    for(i = 1; i <= cnt - 1; i++)
    {
        ans = ans * per % MOD;
    }
    return ans;
}
int main()
{
    while(scanf("%d%d", &n, &m) != -1)
    {
        int i, j, cnt = 0;
        bool ok = true;
        memset(f, -1, sizeof(f));

        for(i = 1; i <= m; i++)
        {
            memset(che, false, sizeof(che));

            for(j = 1; j <= n; j++)
            {
                scanf("%d", &f[i][j]);
                if(f[i][j] == -1 && j == 1)
                {
                    cnt++;
                    break;
                }

                che[f[i][j]] = true;
            }
            for(j = 1; f[i][1] != -1 && j <= n; j++)
            {
                if(che[j] == false)
                {
                    ok = false;
                    break;
                }
            }
        }
        int tem, k;
        for(k = 1; cnt == 0 && ok && k <= n; k++)
        {
            tem = f[m][k];
            for(i = m-1; i >= 1; i--)
            {
                tem = f[i][tem];
            }
            if(tem != k)
            {
                ok = false;
                break;
            }
        }
        if(!ok)
        {
            printf("0\n");
            continue;
        }
        printf("%d\n", solve(cnt));

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值