根据题意可知,要满足题意给的那个合成函数,每一个函数f[i] 与{1,2, ···, n} 都必须是双射关系,即不存在f[i][j] == f[i][k](j != k), 因此对于一个不确定的函数, 其可能的情况有n!个。如果用cnt 表示-1出现的次数, 那么如果cnt-1个未知函数确定了, 那么为了满足题目条件,剩下的未知函数是确定的。所以答案即为cnt-1个不确定函数的排列情况:(n!)^(cnt - 1)。另外对于cnt 等于0的情况,要验证是否满足题意。代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 102;
const int MOD = 1000000007;
int f[MAXN][MAXN], n, m;
bool che[MAXN];
int solve(int cnt)
{
if(cnt == 1 || cnt == 0)
{
return 1;
}
long long per = 1, ans = 1;
int i;
for(i = n; i >= 2; i--)
{
per = per * i % MOD;
}
for(i = 1; i <= cnt - 1; i++)
{
ans = ans * per % MOD;
}
return ans;
}
int main()
{
while(scanf("%d%d", &n, &m) != -1)
{
int i, j, cnt = 0;
bool ok = true;
memset(f, -1, sizeof(f));
for(i = 1; i <= m; i++)
{
memset(che, false, sizeof(che));
for(j = 1; j <= n; j++)
{
scanf("%d", &f[i][j]);
if(f[i][j] == -1 && j == 1)
{
cnt++;
break;
}
che[f[i][j]] = true;
}
for(j = 1; f[i][1] != -1 && j <= n; j++)
{
if(che[j] == false)
{
ok = false;
break;
}
}
}
int tem, k;
for(k = 1; cnt == 0 && ok && k <= n; k++)
{
tem = f[m][k];
for(i = m-1; i >= 1; i--)
{
tem = f[i][tem];
}
if(tem != k)
{
ok = false;
break;
}
}
if(!ok)
{
printf("0\n");
continue;
}
printf("%d\n", solve(cnt));
}
return 0;
}