基本思想
是一种改进的k-menas算法,在聚类过程中引入对类别的评判标准,根据标准自动对某些类别进行合并或分裂,在一定程度上突破对于给定类别数的限制
该算法能够在聚类过程中根据各个类所包含样本的实际情况动态调整聚类中心的数目。如果某个类中样本分散程度较大(通过方差进行衡量)并且样本数量较大,则对其进行分裂操作;如果某两个类别靠得比较近(通过聚类中心的距离衡量),则对它们进行合并操作。
构建方法
注:k-means每调整一个样本,就更新一次各类的均值。ISODATA在全部样本调整完后才重新计算各类的均值,可以提高计算效率。
参考资料:https://www.cnblogs.com/yixuan-xu/p/6272208.html
猜你喜欢:👇🏻
⭐【算法】一个简单的k均值(k-means)原理
⭐【算法】一个简单的主成分分析(PCA)原理
⭐【算法】一个简单的支持向量机(SVM)原理