基本思想
通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
实现原理
整个数组找基准正确位置,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面。
Partition函数
首先,先写partition模板
def partition(nums, left, right):
pivot = nums[left]#初始化一个待比较数据
i,j = left, right
while(i < j):
while(i<j and nums[j]>=pivot): #从后往前查找,直到找到一个比pivot更小的数
j-=1
nums[i] = nums[j] #将更小的数放入左边
while(i<j and nums[i]<=pivot): #从前往后找,直到找到一个比pivot更大的数
i+=1
nums[j] = nums[i] #将更大的数放入右边
#循环结束,i与j相等
nums[i] = pivot #待比较数据放入最终位置
return i #返回待比较数据最终位置
快速排序
#快速排序
def quicksort(nums, left, right):
if left < right:
index = partition(nums, left, right)
quicksort(nums, left, index-1)
quicksort(nums, index+1, right)
arr = [1,3,2,2,0]
quicksort(arr, 0, len(arr)-1)
print(arr)
topk切分
将快速排序改成快速选择,即我们希望寻找到一个位置,这个位置左边是k个比这个位置上的数更小的数,右边是n-k个比该位置上的数大的数,我将它命名为topk_split,找到这个位置后停止迭代,完成了一次划分。
def topk_split(nums, k, left, right):
#寻找到第k个数停止递归,使得nums数组中index左边是前k个小的数,index右边是后面n-k个大的数
if (left<right):
index = partition(nums, left, right)
if index==k:
return
elif index < k:
topk_split(nums, k, index+1, right)
else:
topk_split(nums, k, left, index-1)
获得前k小的数
#获得前k小的数
def topk_smalls(nums, k):
topk_split(nums, k, 0, len(nums)-1)
return nums[:k]
arr = [1,3,2,3,0,-19]
k = 2
print(topk_smalls(arr, k))
print(arr)
获取第k小的数
#获得第k小的数
def topk_small(nums, k):
topk_split(nums, k, 0, len(nums)-1)
return nums[k-1] #右边是开区间,需要-1
arr = [1,3,2,3,0,-19]
k = 3
print(topk_small(arr, k))
print(arr)
获得前k大的数
#获得前k大的数
def topk_larges(nums, k):
#parttion是按从小到大划分的,如果让index左边为前n-k个小的数,则index右边为前k个大的数
topk_split(nums, len(nums)-k, 0, len(nums)-1) #把k换成len(nums)-k
return nums[len(nums)-k:]
arr = [1,3,-2,3,0,-19]
k = 3
print(topk_larges(arr, k))
print(arr)
获得第k大的数
#获得第k大的数
def topk_large(nums, k):
#parttion是按从小到大划分的,如果让index左边为前n-k个小的数,则index右边为前k个大的数
topk_split(nums, len(nums)-k, 0, len(nums)-1) #把k换成len(nums)-k
return nums[len(nums)-k]
arr = [1,3,-2,3,0,-19]
k = 2
print(topk_large(arr, k))
print(arr)
只排序前k个小的数
#只排序前k个小的数
#获得前k小的数O(n),进行快排O(klogk)
def topk_sort_left(nums, k):
topk_split(nums, k, 0, len(nums)-1)
topk = nums[:k]
quicksort(topk, 0, len(topk)-1)
return topk+nums[k:] #只排序前k个数字
arr = [0,0,1,3,4,5,0,7,6,7]
k = 4
topk_sort_left(arr, k)
只排序后k个大的数
#只排序后k个大的数
#获得前n-k小的数O(n),进行快排O(klogk)
def topk_sort_right(nums, k):
topk_split(nums, len(nums)-k, 0, len(nums)-1)
topk = nums[len(nums)-k:]
quicksort(topk, 0, len(topk)-1)
return nums[:len(nums)-k]+topk #只排序后k个数字
arr = [0,0,1,3,4,5,0,-7,6,7]
k = 4
print(topk_sort_right(arr, k))
作者:jun-lin-w
链接:https://leetcode-cn.com/problems/kth-largest-element-in-an-array/solution/ji-yu-kuai-pai-de-suo-you-topkwen-ti-jia-ylsd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
猜你喜欢:👇🏻
⭐【Leetcode】几种简单的排序算法
⭐【Leetcode】二分法左侧边界右侧边界模板
⭐【Leetcode】岛屿问题(数量,周长,面积)