【Leetcode】组合、排列、子集、切割(回溯模板和去重方法)

在这里插入图片描述在这里插入图片描述
基础版回溯函数参数只有(target, show),target是目标大小,show是递归传递的变量。

  • 一个数字只能用一次,那下次递归时就把这次用去掉 nums[:i]+nums[i+1:]
  • [1,2,3]和[3,2,1]算重复,那么加入索引,每次都往后找
  • 要求组合长度为k,那就放个变量 count 计数
  • 如果候选列表有重复的话,先排序,再前后两个进行判断
class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        nums = [1,2,3,4,5,6,7,8,9,1,2]
        nums.sort()
        res = []

        def backtrack(target, show, nums, idx, count):
            if target == 0 and count == k:
                res.append(show[:])
                return
            if target < 0 or count > k:
                return
            for i in range(idx, len(nums)):
                if i>idx and nums[i] == nums[i-1]:
                    continue
                backtrack(target-nums[i], show+[nums[i]], nums[:i]+nums[i+1:], i, count+1)
            return res
        
        return backtrack(n, [], nums, 0, 0)

上面这套模板可以做排列,组合和子集问题。

如果是切割问题的话,用下面的模板:
每次改变的是切割的起始点 idx,原字符串 s 并没有改变。
在这里插入图片描述

class Solution:
    def partition(self, s: str) -> List[List[str]]:
        def isvalid(s):
            i = 0
            j = len(s)-1
            while i < j:
                if s[i] != s[j]:
                    return False
                i += 1
                j -= 1
            return True
        
        res = []
        path = []
        def backtrack(s, idx):
            if idx==len(s):
                res.append(path[:])
                return
            for i in range(idx, len(s)):
                if isvalid(s[idx:i+1]):
                    path.append(s[idx:i+1])
                    backtrack(s,i+1)
                    path.pop()
            return res
        return backtrack(s,0)

下面的递增子序列类似于子集问题,需要注意

  • 单向寻找,回溯时取nums[i+1:]
  • 不能排序,所以哈希去重
  • 判断相邻元素的大小时的边界问题
    在这里插入图片描述
class Solution:
    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        res = []
        def backtrack(nums, path):
            ht = {}
            if len(path)>1:
                res.append(path[:])
            for i in range(len(nums)):
                if len(path)>0:
                    if nums[i]<path[-1]:
                        continue
                if nums[i] in ht:
                    continue
                ht[nums[i]] = i
                backtrack(nums[i+1:], path+[nums[i]])
            return res
        return backtrack(nums, [])

猜你喜欢:👇🏻
【Leetcode】背包问题模板
【Leetcode】几种简单的排序算法
【Leetcode】二分法左侧边界右侧边界模板

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值